Transform and Conquer

This group of techniques solves a problem by a transformation

- to a simpler/more convenient instance of the same problem (instance simplification)

- to a different representation of the same instance (representation change)

- to a different problem for which an algorithm is already available (problem reduction)
Instance simplification - Presorting

Solve a problem’s instance by transforming it into another simpler/easier instance of the same problem

Presorting
Many problems involving lists are easier when list is sorted.
- searching
- computing the median (selection problem)
- checking if all elements are distinct (element uniqueness)

Also:
- Topological sorting helps solving some problems for dags.
- Presorting is used in many geometric algorithms.
How fast can we sort?

Efficiency of algorithms involving sorting depends on efficiency of sorting.

Theorem (see Sec. 11.2): \(\lceil \log_2 n! \rceil \approx n \log_2 n \) comparisons are necessary in the worst case to sort a list of size \(n \) by any comparison-based algorithm.

Note: About \(n \log_2 n \) comparisons are also sufficient to sort array of size \(n \) (by mergesort).
Searching with presorting

Problem: Search for a given K in $A[0..n-1]$

Presorting-based algorithm:
- Stage 1 Sort the array by an efficient sorting algorithm
- Stage 2 Apply binary search

Efficiency: $\Theta(n \log n) + O(\log n) = \Theta(n \log n)$

Good or bad?
Why do we have our dictionaries, telephone directories, etc. sorted?
Element Uniqueness with presorting

- **Presorting-based algorithm**

 Stage 1: sort by efficient sorting algorithm (e.g. mergesort)
 Stage 2: scan array to check pairs of adjacent elements

 Efficiency: $\Theta(n \log n) + O(n) = \Theta(n \log n)$

- **Brute force algorithm**

 Compare all pairs of elements

 Efficiency: $O(n^2)$

- **Another algorithm? Hashing**
Instance simplification – Gaussian Elimination

Given: A system of n linear equations in n unknowns with an arbitrary coefficient matrix.

Transform to: An equivalent system of n linear equations in n unknowns with an upper triangular coefficient matrix.

Solve the latter by substitutions starting with the last equation and moving up to the first one.

\[
\begin{align*}
 a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n &= b_1 \\
 a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n &= b_2 \\
 \vdots \\
 a_{n1}x_1 + a_{n2}x_2 + \ldots + a_{nn}x_n &= b_n
\end{align*}
\]
'Gaussian Elimination (cont.)

The transformation is accomplished by a sequence of elementary operations on the system’s coefficient matrix (which don’t change the system’s solution):

for \(i \leftarrow 1 \) to \(n-1 \) do

replace each of the subsequent rows (i.e., rows \(i+1, \ldots, n \)) by a difference between that row and an appropriate multiple of the \(i \)-th row to make the new coefficient in the \(i \)-th column of that row 0
Example of Gaussian Elimination

Solve

\[
\begin{align*}
2x_1 - 4x_2 + x_3 &= 6 \\
3x_1 - x_2 + x_3 &= 11 \\
x_1 + x_2 - x_3 &= -3
\end{align*}
\]

Gaussian elimination

\[
\begin{array}{c c c c}
2 & -4 & 1 & 6 \\
3 & -1 & 1 & 11 \\
1 & 1 & -1 & -3 \\
\end{array}
\begin{array}{c c c c}
2 & -4 & 1 & 6 \\
0 & 5 & -1/2 & 2 \\
0 & 0 & -6/5 & -36/5 \\
\end{array}
\]

Backward substitution

\[
\begin{align*}
x_3 &= \frac{-36/5}{-6/5} = 6 \\
x_2 &= \frac{2 + (1/2) * 6}{5} = 1 \\
x_1 &= \frac{6 - 6 + 4*1}{2} = 2
\end{align*}
\]
Pseudocode and Efficiency of Gaussian Elimination

Stage 1: Reduction to the upper-triangular matrix

for \(i \leftarrow 1 \) to \(n-1 \) do
 for \(j \leftarrow i+1 \) to \(n \) do
 for \(k \leftarrow i \) to \(n+1 \) do

Stage 2: Backward substitution

for \(j \leftarrow n \) downto 1 do
 \(t \leftarrow 0 \)
 for \(k \leftarrow j+1 \) to \(n \) do
 \(t \leftarrow t + A[j, k] \times x[k] \)
 \(x[j] \leftarrow (A[j, n+1] - t) / A[j, j] \)

Efficiency: \(\Theta(n^3) + \Theta(n^2) = \Theta(n^3) \)
Computing an LU Decomposition

- We first consider the case where the permutation matrix is the identity matrix.

- We use Gaussian Elimination:
 - subtract multiples of the first equation from the remaining equations to remove the first variable.
 - subtract multiples of the second equation from the remaining equations to remove the second variable.
 - continue in this manner until the remaining coefficients are in upper triangular form.

- For $n = 1$ we are done; for larger n we will use a recursive strategy.
Finding L and U

We first decompose A into the Schur complement

$$
A = \begin{pmatrix}
 a_{11} & a_{12} & \cdots & a_{1n} \\
 a_{21} & a_{22} & \cdots & a_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{n1} & a_{n2} & \cdots & a_{nn}
\end{pmatrix}
= \begin{pmatrix}
 a_{11} & w^T \\
v & A'
\end{pmatrix}
= \begin{pmatrix}
 1 & 0 \\
v/a_{11} & I_{n-1}
\end{pmatrix}
\begin{pmatrix}
a_{11} & w^T \\
0 & A' - vw^T/a_{11}
\end{pmatrix}.
$$

We recursively find the LU decomposition of the Schur complement

$$
A' - vw^T/a_{11} = L'U',
$$

$$
A = \begin{pmatrix}
 1 & 0 \\
v/a_{11} & I_{n-1}
\end{pmatrix}
\begin{pmatrix}
a_{11} & w^T \\
0 & A' - vw^T/a_{11}
\end{pmatrix}
= \begin{pmatrix}
 1 & 0 \\
v/a_{11} & I_{n-1}
\end{pmatrix}
\begin{pmatrix}
a_{11} & w^T \\
0 & L'U'
\end{pmatrix}
= \begin{pmatrix}
 1 & 0 \\
v/a_{11} & L'
\end{pmatrix}
\begin{pmatrix}
a_{11} & w^T \\
0 & U'
\end{pmatrix}
= LU,
$$
Pivoting and the LU Algorithm

Pivoting

- since we divide by a_{11}, it cannot be zero, it is called a pivot
- the same is true at the next recursive step
- the permutation matrix P is used to insure that all pivots are not zero; if the matrix is positive-definite we do not need P

LU-Decomposition(A)

1. $n \leftarrow \text{rows}[A]$
2. for $k \leftarrow 1$ to n
3. do $u_{kk} \leftarrow a_{kk}$
4. for $i \leftarrow k + 1$ to n
5. do $l_{ik} \leftarrow a_{ik}/u_{kk}$ $\triangleright l_{ik}$ holds v_i
6. $u_{ki} \leftarrow a_{ki}$ $\triangleright u_{ki}$ holds w_i^T
7. for $i \leftarrow k + 1$ to n
8. do for $j \leftarrow k + 1$ to n
9. do $a_{ij} \leftarrow a_{ij} - l_{ik}u_{kj}$
10. return L and U

- Notice an iterative loop replaces recursion
- the code only computes the “significant” entries (not the 0’s or 1’s)
- the complexity is $\Theta(n^3)$
Example Computation

\[
\begin{bmatrix}
2 & 3 & 1 & 5 \\
6 & 13 & 5 & 19 \\
2 & 19 & 10 & 23 \\
4 & 10 & 11 & 31 \\
\end{bmatrix}
\]

(a)

\[
\begin{bmatrix}
2 & 3 & 1 & 5 \\
3 & 4 & 2 & 4 \\
1 & 6 & 9 & 18 \\
2 & 4 & 9 & 21 \\
\end{bmatrix}
\]

(b)

\[
\begin{bmatrix}
2 & 3 & 1 & 5 \\
3 & 4 & 1 & 2 \\
1 & 4 & 1 & 7 \\
2 & 1 & 7 & 17 \\
\end{bmatrix}
\]

(c)

\[
\begin{bmatrix}
2 & 3 & 1 & 5 \\
3 & 4 & 2 & 4 \\
1 & 4 & 1 & 2 \\
2 & 1 & 7 & 3 \\
\end{bmatrix}
\]

(d)

\[
\begin{bmatrix}
2 & 3 & 1 & 5 \\
1 & 0 & 0 & 0 \\
3 & 1 & 0 & 0 \\
1 & 4 & 1 & 0 \\
2 & 1 & 7 & 1 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
2 & 3 & 1 & 5 \\
0 & 4 & 2 & 4 \\
0 & 0 & 1 & 2 \\
0 & 0 & 0 & 3 \\
\end{bmatrix}
\]

(e)
Searching Problem

Problem: Given a (multi)set S of keys and a search key K, find an occurrence of K in S, if any

- Searching must be considered in the context of:
 - file size (internal vs. external)
 - dynamics of data (static vs. dynamic)

- Dictionary operations (dynamic data):
 - find (search)
 - insert
 - delete
Taxonomy of Searching Algorithms

- **List searching**
 - sequential search
 - binary search
 - interpolation search

- **Tree searching**
 - binary search tree
 - binary balanced trees: AVL trees, red-black trees
 - multiway balanced trees: 2-3 trees, 2-3-4 trees, B trees

- **Hashing**
 - open hashing (separate chaining)
 - closed hashing (open addressing)
Binary Search Tree

Arrange keys in a binary tree with the *binary search tree property*:

Example: 5, 3, 1, 10, 12, 7, 9
Dictionary Operations on Binary Search Trees

Searching – straightforward
Insertion – search for key, insert at leaf where search terminated
Deletion – 3 cases:
 - deleting key at a leaf
 - deleting key at node with single child
 - deleting key at node with two children

Efficiency depends of the tree’s height: $\lfloor \log_2 n \rfloor \leq h \leq n-1$, with height average (random files) be about $3\log_2 n$

Thus all three operations have
 - worst case efficiency: $\Theta(n)$
 - average case efficiency: $\Theta(\log n)$

Bonus: inorder traversal produces sorted list
Balanced Search Trees

Attractiveness of binary search tree is marred by the bad (linear) worst-case efficiency. Two ideas to overcome it are:

- to rebalance binary search tree when a new insertion makes the tree “too unbalanced”
 - AVL trees
 - red-black trees

- to allow more than one key per node of a search tree
 - 2-3 trees
 - 2-3-4 trees
 - B-trees
Definition An AVL tree is a binary search tree in which, for every node, the difference between the heights of its left and right subtrees, called the balance factor, is at most 1 (with the height of an empty tree defined as -1)

Tree (a) is an AVL tree; tree (b) is not an AVL tree
Rotations

If a key insertion violates the balance requirement at some node, the subtree rooted at that node is transformed via one of the four rotations. (The rotation is always performed for a subtree rooted at an “unbalanced” node closest to the new leaf.)

Single R-rotation

Double LR-rotation
General case: Single R-rotation

A. Levitin "Introduction to the Design & Analysis of Algorithms," 2nd ed., Ch. 6
General case: Double LR-rotation

double LR-rotation
AVL tree construction - an example

Construct an AVL tree for the list 5, 6, 8, 3, 2, 4, 7

```
<table>
<thead>
<tr>
<th>0</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>6</td>
</tr>
<tr>
<td>-2</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>8</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>
```

$L(5)$

$R(5)$
AVL tree construction - an example (cont.)

LR (6)

RL (6)
Analysis of AVL trees

- \(h \leq 1.4404 \log_2 (n + 2) - 1.3277 \)

 average height: \(1.01 \log_2 n + 0.1 \) for large \(n \) (found empirically)

- Search and insertion are \(O(\log n) \)

- Deletion is more complicated but is also \(O(\log n) \)

- Disadvantages:
 - frequent rotations
 - complexity

- A similar idea: red-black trees (height of subtrees is allowed to differ by up to a factor of 2)
Multiway Search Trees

Definition A *multiway search tree* is a search tree that allows more than one key in the same node of the tree.

Definition A node of a search tree is called an *n-node* if it contains $n-1$ ordered keys (which divide the entire key range into n intervals pointed to by the node’s n links to its children):

$$k_1 < k_2 < \ldots < k_{n-1}$$

Note: Every node in a classical binary search tree is a 2-node.
Definition A 2-3 tree is a search tree that
- may have 2-nodes and 3-nodes
- height-balanced (all leaves are on the same level)

A 2-3 tree is constructed by successive insertions of keys given, with a new key always inserted into a leaf of the tree. If the leaf is a 3-node, it’s split into two with the middle key promoted to the parent.
2-3 tree construction – an example

Construct a 2-3 tree the list 9, 5, 8, 3, 2, 4, 7

```
9
5, 9
5, 8, 9
8
5, 9
5
9
3, 5
9
2, 3, 5
9
3, 8
2, 5, 9
3, 8
2, 4, 5, 9
3, 8
2, 4, 5, 7
9
3, 5, 8
2, 4, 7, 9
3, 5, 8
3, 5
9
5
2
4, 7
9
3
4
7
9
8
9
```
Analysis of 2-3 trees

- \(\log_3(n + 1) - 1 \leq h \leq \log_2(n + 1) - 1 \)

- Search, insertion, and deletion are in \(\Theta(\log n) \)

- The idea of 2-3 tree can be generalized by allowing more keys per node
 - 2-3-4 trees
 - B-trees
Definition A heap is a binary tree with keys at its nodes (one key per node) such that:

- It is essentially complete, i.e., all its levels are full except possibly the last level, where only some rightmost keys may be missing
- The key at each node is ≥ keys at its children
Illustration of the heap’s definition

Note: Heap’s elements are ordered top down (along any path down from its root), but they are not ordered left to right.
Some Important Properties of a Heap

- Given \(n \), there exists a unique binary tree with \(n \) nodes that is essentially complete, with \(h = \left\lfloor \log_2 n \right\rfloor \)

- The root contains the largest key

- The subtree rooted at any node of a heap is also a heap

- A heap can be represented as an array
Heap’s Array Representation

Store heap’s elements in an array (whose elements indexed, for convenience, 1 to n) in top-down left-to-right order.

Example:

- Left child of node j is at $2j$
- Right child of node j is at $2j+1$
- Parent of node j is at $\lfloor j/2 \rfloor$
- Parental nodes are represented in the first $\lfloor n/2 \rfloor$ locations.
Heap Construction (bottom-up)

Step 0: Initialize the structure with keys in the order given

Step 1: Starting with the last (rightmost) parental node, fix the heap rooted at it, if it doesn’t satisfy the heap condition: keep exchanging it with its largest child until the heap condition holds

Step 2: Repeat Step 1 for the preceding parental node
Example of Heap Construction

Construct a heap for the list 2, 9, 7, 6, 5, 8

```
Construct a heap for the list 2, 9, 7, 6, 5, 8

2

9

7

6 5 8

2

9

8

6 5 7

2

9

8

6 5 7

2

9

8

6 5 7

2

9

8

6 5 7

2

9

8

6 5 7

6 5 7
```
Algorithm \(\text{HeapBottomUp}(H[1..n]) \)

// Constructs a heap from the elements of a given array
// by the bottom-up algorithm
// Input: An array \(H[1..n] \) of orderable items
// Output: A heap \(H[1..n] \)

for \(i \leftarrow \lfloor n/2 \rfloor \) downto 1 do
 \(k \leftarrow i; \quad v \leftarrow H[k] \)
 heap \(\leftarrow \) false
 while not heap and \(2 \times k \leq n \) do
 \(j \leftarrow 2 \times k \)
 if \(j < n \) // there are two children
 if \(H[j] \leq H[j + 1] \) \(j \leftarrow j + 1 \)
 else \(H[k] \leftarrow H[j]; \quad k \leftarrow j \)
 heap \(\leftarrow \) true
 \(H[k] \leftarrow v \)
Heapsort

Stage 1: Construct a heap for a given list of \(n \) keys

Stage 2: Repeat operation of root removal \(n-1 \) times:
- Exchange keys in the root and in the last (rightmost) leaf
- Decrease heap size by 1
- If necessary, swap new root with larger child until the heap condition holds
Example of Sorting by Heapsort

Sort the list 2, 9, 7, 6, 5, 8 by heapsort

<table>
<thead>
<tr>
<th>Stage 1 (heap construction)</th>
<th>Stage 2 (root/max removal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 9 7 6 5 8</td>
<td>2 6 8 2 5 7</td>
</tr>
<tr>
<td>2 9 8 6 5 7</td>
<td>7 6 8 2 5</td>
</tr>
<tr>
<td>2 9 8 6 5 7</td>
<td>8 6 7 2 5</td>
</tr>
<tr>
<td>9 2 8 6 5 7</td>
<td>5 6 7 2</td>
</tr>
<tr>
<td>9 6 8 2 5 7</td>
<td>7 6 5 2</td>
</tr>
<tr>
<td></td>
<td>2 6 5</td>
</tr>
<tr>
<td></td>
<td>6 2 5</td>
</tr>
<tr>
<td></td>
<td>5 2</td>
</tr>
<tr>
<td></td>
<td>5 2</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>
Analysis of Heapsort

Stage 1: Build heap for a given list of n keys

worse-case

$$C(n) = \sum_{i=0}^{h-1} 2(h-i) \cdot 2^i = 2 \left(n - \log_2(n + 1) \right) \in \Theta(n)$$

Both worst-case and average-case efficiency: $\Theta(n \log n)$

Stage 2: Repeat operation of root removal $n-1$ times (fix heap)

worse-case

$$C(n) = \sum_{i=1}^{n-1} 2 \log_2 i \in \Theta(n \log n)$$

In-place: yes

Stability: no (e.g., 1 1)
A priority queue is the ADT of a set of elements with numerical priorities with the following operations:

- find element with highest priority
- delete element with highest priority
- insert element with assigned priority (see below)

Heap is a very efficient way for implementing priority queues.

Two ways to handle priority queue in which highest priority = smallest number.
Insertion of a New Element into a Heap

- **Insert** the new element at last position in heap.
- **Compare** it with its parent and, if it violates heap condition, exchange them.
- **Continue comparing** the new element with nodes up the tree until the heap condition is satisfied.

Example: Insert key 10

```
   9
  / \
 6   8
 / \\  / \
2  5 7 10
```

Efficiency: $O(\log n)$
Horner’s Rule For Polynomial Evaluation

Given a polynomial of degree \(n \)

\[
p(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0
\]

and a specific value of \(x \), find the value of \(p \) at that point.

Two brute-force algorithms:

For \(p \):

\[
p \leftarrow 0
\]

for \(i \leftarrow n \) downto 0 do

\[
power \leftarrow 1
\]

for \(j \leftarrow 1 \) to \(i \) do

\[
power \leftarrow power \times x
\]

\[
p \leftarrow p + a_i \times power
\]

return \(p \)

For \(p \):

\[
p \leftarrow a_0; power \leftarrow 1
\]

for \(i \leftarrow 1 \) to \(n \) do

\[
power \leftarrow power \times x
\]

\[
p \leftarrow p + a_i \times power
\]

return \(p \)
Horner’s Rule

Example: \(p(x) = 2x^4 - x^3 + 3x^2 + x - 5 = \)
\[= x(2x^3 - x^2 + 3x + 1) - 5 = \]
\[= x(x(2x^2 - x + 3) + 1) - 5 = \]
\[= x(x(x(2x - 1) + 3) + 1) - 5 \]

Substitution into the last formula leads to a faster algorithm

Same sequence of computations are obtained by simply arranging the coefficient in a table and proceeding as follows:

<table>
<thead>
<tr>
<th>coefficients</th>
<th>2</th>
<th>-1</th>
<th>3</th>
<th>1</th>
<th>-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x = 3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Horner’s Rule pseudocode

ALGORITHM Horner($P[0..n]$, x)

// Evaluates a polynomial at a given point by Horner’s rule
// Input: An array $P[0..n]$ of coefficients of a polynomial of degree n
// (stored from the lowest to the highest) and a number x
// Output: The value of the polynomial at x

$p ← P[n]$
for $i ← n - 1$ downto 0 do
 $p ← x * p + P[i]$
return p

Efficiency of Horner’s Rule: # multiplications = # additions = n

Synthetic division of of $p(x)$ by $(x-x_0)$
Example: Let $p(x) = 2x^4 - x^3 + 3x^2 + x - 5$. Find $p(x):(x-3)$
Computing a^n (revisited)

Left-to-right binary exponentiation

Initialize product accumulator by 1.

Scan n’s binary expansion from left to right and do the following:

If the current binary digit is 0, square the accumulator (S); if the binary digit is 1, square the accumulator and multiply it by a (SM).

Example: Compute a^{13}. Here, $n = 13 = 1101_2$.

binary rep. of 13: \[
\begin{array}{cccc}
1 & 1 & 0 & 1 \\
\text{SM} & \text{SM} & \text{S} & \text{SM}
\end{array}
\]

accumulator: \[
\begin{array}{c}
1 \\
1^2*a = a \\
a^2*a = a^3 \\
(a^3)^2 = a^6 \\
(a^6)^2*a = a^{13}
\end{array}
\]

(computed left-to-right)

Efficiency: $(b-1) \leq M(n) \leq 2(b-1)$ where $b = \lceil \log_2 n \rceil + 1$
Computing a^n (cont.)

Right-to-left binary exponentiation

Scan n’s binary expansion from right to left and compute a^n as the product of terms a^{2^i} corresponding to 1’s in this expansion.

Example Compute a^{13} by the right-to-left binary exponentiation. Here, $n = 13 = 1101_2$.

\[
\begin{array}{cccccc}
1 & 1 & 0 & 1 \\
a^8 & a^4 & a^2 & a \\
a^8 & a^4 & * & a \\
\end{array}
\]

(computed right-to-left)

Efficiency: same as that of left-to-right binary exponentiation
Problem Reduction

This variation of transform-and-conquer solves a problem by transforming it into a different problem for which an algorithm is already available.

To be of practical value, the combined time of the transformation and solving the other problem should be smaller than solving the problem as given by another method.
Examples of Solving Problems by Reduction

- computing $\text{lcm}(m, n)$ via computing $\text{gcd}(m, n)$

- counting number of paths of length n in a graph by raising the graph’s adjacency matrix to the n-th power

- transforming a maximization problem to a minimization problem and vice versa (also, min-heap construction)

- linear programming

- reduction to graph problems (e.g., solving puzzles via state-space graphs)
What is the lcm?

- LCM stands for the least common multiple
- What is the LCM of 24 and 36? The answer is 72 because 24 divides into 72 exactly 3 times and 36 divides into 72 twice. This is the smallest number that 24 and 36 divides into without a remainder.
- We don’t need a new algorithm because of the mathematical relationship:

\[
lcm(m, n) = \frac{m \times n}{\gcd(m, n)}
\]

- Check: \(\gcd(24,36) = \gcd(36,24) = \gcd(24,12) = \gcd(12,0) = 12\); so \(lcm(24,36) = 24 \times 36 / 12 = 72\)
Given a graph we want to count the number of distinct paths between two nodes. This includes the number of paths from a node to itself.

First we represent a graph (we assume undirected and nonweighted) using an adjacency matrix (a 1 means an edge is present and 0 means an edge is absent).

We raise this matrix to the nth power assuming we are counting paths of length n.

FIGURE 8.18 A graph, its adjacency matrix A, and its square A^2. The elements of A and A^2 indicate the number of paths of lengths 1 and 2, respectively.