
Monadic Fold, Monadic Build, Monadic Short Cut Fusion

A research paper by Patricia Johann and Neil Ghani⋆

Abstract

Short cut fusion improves the efficiency of modularly constructed programs by elim-
inating intermediate data structures produced by one program component and im-
mediately consumed by another. We define a combinator which expresses uniform
production of data structures in monadic contexts, and is the natural counterpart to
the well-known monadicfold which consumes them. Like the monadicfold, our
new combinator quantifies over monadic algebras rather thanstandard ones. Together
with the monadicfold, it gives rise to a new short cut fusion rule for eliminating
intermediate data structures in monadic contexts. This newrule differs significantly
from previous short cut fusion rules, all of which are based on combinators which
quantify over standard, rather than monadic, algebras. We give examples illustrating
the benefits of quantifying over monadic algebras, prove ournew fusion rule correct,
and show how it can improve programs. We also consider its coalgebraic dual.

1 THE PROBLEM

Consider the following variation on the well-known problemof fusing modular
list-processing functions [5]. Suppose we want to sum the cubes of all the integers
in a list. Suppose further that cubing any of the integers in the list can generate an
out-of-range error, and that each of the partial sums of their cubes can also gener-
ate an out-of-range error. If out-of-range errors are tested for usingoutOfRange
:: Int -> Maybe Int, where the datatypedata Maybe a = Nothing |
Just a is the standard error-handling monad given in the Haskell prelude, then
it is natural to write this program as the composition of two functions: i) a func-
tion mmapcube :: [Int] -> Maybe [Int] which checks whether the cube
of any integer in its input list generates an out-of-range error and, if so, propagates
the error, and ii) a functionmsum :: [Int] -> Maybe Int which sums the
elements of a list of integers, checking along the way whether each accumulated
partial sum generates an out-of-range error. We’d have

msumOfCubes xs = mmapcube xs >>= msum

whereNothing >>= k = Nothing andJust x >>= k = k x, as usual.
If we want to optimize this program by eliminating the intermediate structure of

typeMaybe [Int] produced bymmapcube and consumed by\x -> x >>= msum,
then we might look to the standard short cut — i.e.,fold/build — fusion rule [5]
for inspiration. Recalling that>>= is the analogue of composition for monadic
computations, we first observe that the pure analoguesmapcube andsum of the
monadic functionsmmapcube andmsum above can be written in terms of the well-
known uniform list-consuming and -producing functionsfoldr andbuild given
in Figure 1. Lettingcube x = x * x * x we have

mapcube :: [Int] -> [Int]
mapcube xs = build (\c n -> foldr (c . cube) n xs)

⋆University of Strathclyde, Glasgow, Scotland,{patricia,ng}@cis.strath.ac.uk.

foldr :: (b -> a -> a) -> a -> [b] -> a
foldr c n [] = n
foldr c n (x:xs) = c x (foldr c n xs)

build :: (forall a. (b -> a -> a) -> a -> a) -> [b]
build g = g (:) []

foldr c n (build g) = g c n

FIGURE 1. The foldr and build combinators and foldr/build rule for lists.

sum :: [Int] -> Int
sum = foldr (+) 0

The composition ofmapcube andsum gives a non-error-checking version ofmmapcube
which be fused via thefoldr/build rule, also given in Figure 1, as follows:

sum (mapcube xs) = foldr (+) 0
(build (\c n -> foldr (c . cube) n xs))

= (\c n -> foldr (c . cube) n xs) (+) 0
= foldr ((+) . cube) 0 xs

Note that the intermediate list produced bymapcube and immediately consumed
by sum in sum (mapcube xs) is not constructed by the fused program.

In the monadic setting we wish to eliminate not just the intermediate list of
cubes, but rather an entire intermediate structure of typeMaybe [Int]. In gen-
eral, in the monadic setting we seek to eliminate not just intermediate data struc-
tures, but intermediate data structureswithin monadic contexts. In the case of
msumOfCubes we can write the monadic consumermsum in terms of the standard
fold combinator for lists. Indeed we have

msum = foldr (\x p -> do {v <- p; z <- outOfRange x
outOfRange (z + v)}) (Just 0)

But we cannot similarly write the monadic producermsumcube in terms of the
standardbuild combinator for lists. The difficulty is thatbuild produces a list
of type [t], whereasmsumcube produces a structure of typeMaybe [t]. It is
thus unclear how to writemsumOfCubes in terms offold andbuild for lists, or
how to fusemsumOfCubes using standard short cut fusion. And althoughfold
andbuild combinators and short cut fusion rules can be defined generically for
all inductive types as in Figure 2, they are also unsuitable for fusingmsumOfCubes
becauseMaybe [t] is not an inductive type except in a trivial way.

The central question considered in this paper is whether or not there is a variant
of short cut fusion which can fuse modular monadic programs like msumOfCubes.
We answer in the affirmative by first giving a monadicbuild combinator to com-
plement the monadicfold combinator from the literature [1, 10, 11] in the same
way that the standardbuild combinator complements the standardfold combi-
nator. We then give a monadic short cut rule for fusing monadic compositions (i.e.,

newtype Mu f = In {unIn :: f (Mu f)}

fold :: Functor f => (f a -> a) -> Mu f -> a
fold h (In k) = h (fmap (fold h) k)

build :: Functor f =>
(forall a. (f a -> a) -> c -> a) -> c -> Mu f

build g = g In

fold k . build g = g k

FIGURE 2. The fold and build combinators and fold/build rule.

binds) of functions written in terms of monadicfold andbuild, and show how
it solves themsumOfCubes problem outlined above. Finally, we prove the cor-
rectness of our monadic short cut fusion rule. Our monadic combinators and short
cut fusion rule are given in Figure 3 and explained in Section2.2. As we shall
see later, their conceptual basis lies in the observation that, in a monadic setting, it
is fruitful to consider not just standard algebras — i.e., pure functionsf a -> a

wheref is the functor underlying the datatype of the inductive structure to be elim-
inated “in context” — but rathermonadic algebras, i.e., functionsf a -> m a

wherem is the monad in question. Just as the monadicfold combinator consumes
monadic, rather than standard, algebras, so the monadicbuild combinator intro-
duced herein quantifies over monadic, rather than standard,algebras. Our monadic
short cut fusion rule thus eliminates not just intermediatedata structures, like[t],
but also intermediate structures situated in monadic contexts, likeMaybe [t].

The remainder of this paper is structured as follows. In Section 2 we discuss
background and related work; in particular we consider the relative merits of struc-
turing code using standardfold and monadicfold. In Section 3 we apply our
monadic fusion rule to a larger application, namely an interpreter for nondetermin-
istic expressions. In Section 4 we prove our main result, thecorrectness of our
monadic fusion rule. In Section 5 we consider its coalgebraic dual. Finally, in
Section 6 we set out some directions for future work and conclude.

2 BACKGROUND AND RELATED WORK

2.1 Short Cut Fusion for Inductive Types

Inductive datatypes are fixed points of functors. Functors can be implemented in
Haskell as type constructors supportingfmap functions as follows:

class Functor f where
fmap :: (a -> b) -> f a -> f b

The functionfmap is expected to satisfy the two semantic functor laws stating
thatfmap preserves identities and composition. It is well-known that analogues of
foldr exist for every inductive datatype. As shown in [3, 4], everyinductive type
also has an associated generalizedbuild combinator andfold/build rule; these

mfold :: (Functor f, Monad m, Dist f m) =>
(f a -> m a) -> Mu f -> m a

mfold h = fold (\xs -> delta xs >>= h)

mbuild :: (Functor f, Monad m) => (forall a.
(f a -> m a) -> c -> m a) -> c -> m (Mu f)

mbuild g = g (return . In)

mbuild g c >>= mfold h = g h c

FIGURE 3. The mfold and mbuild combinators and mfold/mbuild rule.

can be implemented generically in Haskell as in Figure 2. There,Mu f represents
the least fixed point of the functorf, andIn represents the structure map forf,
i.e., the “bundled” constructors for the datatypeMu f. The “extra” typec in the
type ofbuild is motivated in citegjuv05,guv03 and to lesser extent in Section 4
below. Thefold/build rule for inductive types can be used to eliminate data
structures of typeMu f from computations. Thefoldr andbuild combinators
for lists can be recovered by takingf to be the functor whose fixed point is[b]; the
foldr/build rule can be recovered by taking, in addition,c to be the unit type.

2.2 Short Cut Fusion in the Presence of Monads

Monads model a variety of computational effects. They are implemented in Haskell
as type constructors supporting>>= andreturn operations as follows:

class Monad m where
return :: a -> m a
(>>=) :: m a -> (a -> m b) -> m b

These operations are expected to satisfy the semantic monadlaws [9].
The monadicfold combinatormfold given in Figure 3 is well-known [1, 10,

11]. It is defined in terms of the standardfold and a distributivity lawdelta ::

f (m a) -> m (f a)which describes how the results of monadic computations
embodied bym on components of a data structure described by a functorf are
propagated to the overall data structure; distributivity laws can be implemented in
Haskell using the classDist f m of types, each of which supports a distributivity
law forf andm. But, until now, a monadicbuildwhich complements the monadic
fold in the same way that the standardbuild complements the standardfold
has not been given. Thus, although monadic fusion has been studied by other
researchers [8, 10, 11, 12], all techniques developed thus far involve the standard
fold rather than its monadic counterpart. In particular, a monadic short cut fusion
rule – i.e., a short cut rule for programs expressed in terms of monadicfold and
monadicbuild — has until now not been studied.

To define a monadicbuild combinator we first observe that the functional ar-
gument to such abuild, and thus the monadicbuild combinator itself, must have
a monadic return type. Moreover, just as we expect the functions the monadicfold

mfoldl :: Monad m => (Int -> a -> m a) ->
m a -> [Int] -> m a

mfoldl c n = foldr (\ i y -> do {v <- y; c i v}) n

mbuildl :: (forall a. (Int -> a -> m a) -> m a ->
c -> m a) -> c -> m [Int]

mbuildl g = g (\ x y -> return (x:y)) (return [])

mbuildl g k >>= mfoldl c n = g c n k

FIGURE 4. The mfoldl and mbuildl combinators and mfoldl/mbuildl rule.

combinator uses to consume a data structure to have monadic return types, we
also expect the monadicbuild combinator to quantify over all uses of functions
with monadic return types to consume such structures. This leads us to define the
monadicbuild combinatormbuild given in Figure 3. Then, to optimize modular
programs constructed from these combinators we can also introduce the monadic
short cut fusion rule formfold andmbuild given there. Unlike the monadic fu-
sion rule of [11], which eliminates the data structure but leaves the monadic context
in which it is situated intact, the rule in Figure 3 eliminates both the entire inter-
mediate data structure and its entire monadic context. The correctness of this rule
is the main result of this paper. We prove it in Section 4 below.

To demonstrate the monadic combinators and fusion rule, we use them to solve
themsumOfCubes problem from the introduction. We can specialize the combina-
tors and rule in Figure 3 tof x = N | C Int x, m = Maybe, and

delta N = Just N
delta (C i y) = do {v <- y; Just (C i v)}

to get the constructs in Figure 4. We have

msum = mfoldl (\x y -> outOfRange (x + y)) (return 0)

mmapcube = mbuildl g where
g :: (Int -> a -> Maybe a) -> Maybe a -> [Int] -> Maybe a
g c n [] = n
g c n (v:vs) = do {k <- outOfRange (cube v); z <- g c n vs;

c k z}

Applying the monadic fusion rule from Figure 4 tomsumOfCubes gives

msumOfCubes xs = mmapcube xs >>= msum
= mbuildl g xs >>=

mfoldl (\x y -> outOfRange (x + y)) (return 0)
= g (\x y -> outOfRange (x + y)) (return 0) xs

Thus

msumOfCubes [] = return 0
msumOfCubes (v:vs) = do {k <- outOfRange (cube v);

z <- msumOfCubes vs;
outOfRange (k + z)}

This fused version performs its range checks “on the fly” rather than prior to sum-
ming the cubes of the elements of its input list, and aborts the summing computa-
tion if any individual element ofxs or any of its partial sums is out-of-range.

We now discuss the relative merits of structuring code withfold versus with
mfold. This is critical, since the usefulness of ourmbuild combinator andmfold/
mbuild fusion rule depends on that of themfold combinator. It turns out that we
can write consumers likemsum in terms of eithermfold or fold. Indeed, every
standard algebraf a -> a can be turned into a monadic one and, in the presence
of distributivity, every monadic algebra can be turned intoa standard one. So,
in the presence of distributivity,fold andmfold are equally expressive. Which,
then, should we prefer?

Both of these combinators recursively act on the subterms ofa term to produce
results which are of monadic type. The standardfold combinator then uses an
algebra of typef (m a) -> m a to combine these results into an overall result
for the original term. The carrier of the standardfold’s algebra ism a, which
means that the programmer must specify how the monadic contexts generated by
the recursive calls will be propagated to the original term.By contrast, themfold
combinator is used together with a distributivity law, whose role is precisely to
achieve this propagation. The role of the monadic algebra oftypef a -> m a is
thus to describe howpure values can be combined and/or generate new effects.

Thus, there is a trade-off between structuring code with standardfolds and
monadicfolds. Using themfold combinator frees the programmer from having
to manually propagate the monadic contexts produced by the recursive subcalls.
The price paid is having to provide a distributivity law up front. Thus, in the
presence of an appropriate distributivity law, programming can proceed as if the
recursive calls produced pure, rather than monadic, computations. This seems an
excellent trade: it is easier to modularize the problem and supply a monadic alge-
bra than to supply a standard algebra with a monadic carrier.By contrast, using
the standardfold essentially amounts to programming by hand the plumbing that
mfold does automatically. Thus, were we to usefold rather thanmfold, we
would in effect be hardwiring the definition ofmfold in terms offold into every
algebra supplied tofold. Abstracting common patterns of recursion into combi-
nators — asmfold does — is widely recognised as key to writing clear, concise,
and correct code, so we advocate using the monadic approach whenever possible.

3 APPLICATION: EVALUATING NONDETERMINISTIC EXPRESSIONS

Consider the following datatype of nondeterministic expressions:

data NExp = NVar Char | NNum Int | NAdd NExp NExp
| NSet Char NExp | NOr NExp NExp

The first three clauses of this definition represent variables, integers, and sums. Ex-
pressions of the formNSet c e assign the value ofe to the variable with name
c, and those of the formNOr e1 e2 represent the nondeterministic choice ofe1

or e2. An evaluator for nondeterministic expressions must keep track of both the
environment with respect to which the expression is evaluated and the nondeter-
minism introduced by theNOr constructor. Computations involving environments
can be modeled by the state monad, while those involving nondeterminism can be
modeled by the list monad. The canonical way to model computations involving
both is to apply the state monad transformer to the list monad. This gives

newtype NState s a = NSt {runNState :: s -> [(a,s)]}

instance Monad (NState s) where
return x = NSt (\s -> [(x,s)])
NSt f >>= g = NSt (\s ->

concat [runNState (g v) s’ | (v, s’) <- f s])

The type of an evaluatorevalNExp for nondeterministic expressions isevalNExp
:: NExp -> NState Env Int, wheretype Env = Char -> Int defines
a type of environments mapping variable names to integer values. We construct
evalNExp as a composition of two functions. The first one, calledcompile, takes
as input a nondeterministic expression and returns a list ofexpressions not con-
taining theNOr constructor; we say that such expressions aredeterministic. Rather
than usingNExp to represent both determinstic expressions and nondeterministic
ones — thereby leaving the determinism constraint implicitat the meta-level — we
introduce an object-level datatype to represent deterministic expressions. We have

data DExp = DVar Char | DNum Int
| DAdd DExp DExp | DSet Char DExp

Thuscompile has typeNExp -> NState Env DExp. The second function used
to constructevalNExp is an evaluatorevalDExp :: DExp -> NState Env
Int for deterministic expressions. In essence, the modular approach reduces the
problem of constructing an evaulator for nondeterministicexpressions to the prob-
lem of constructing one for deterministic expressions. We have

evalNExp e = compile e >>= evalDExp

We can writeevalDExp using the instance ofmfold for DExp. We have

evalDExp = mfoldDExp fetch return (\i j -> return (i+j)) update

where

fetch :: Char -> NState Env Int
fetch c = NSt (\env -> [(env c, env)])

looks up the value of a variable in the current environment and

update :: Char -> Int -> NState Env Int
update c i = NSt (\e -> [(i, \c’ -> if c == c’ then i else e c’)])

makes a new environment which is obtained from the current one by updating the
binding for the variablec to i. In addition,

mfoldDExp :: Monad m => (Char -> m a) -> (Int -> m a) ->
(a -> a -> m a) -> (Char -> a -> m a) ->

DExp -> m a
mfoldDExp v n a s = foldDExp v n

(\e1 e2 -> do {x1 <- e1; x2 <- e2; a x1 x2})
(\i e -> do {x <- e; s i x})

is defined in terms of the instance of the standardfold combinator forDExp:

foldDExp :: (Char -> a) -> (Int -> a) -> (a -> a -> a) ->
(Char -> a -> a) -> DExp -> a

foldDExp v n a s (DVar x) = v x
foldDExp v n a s (DNum i) = n i
foldDExp v n a s (DAdd e1 e2) = a (foldDExp v n a s e1)

(foldDExp v n a s e2)
foldDExp v n a s (DSet x e) = s x (foldDExp v n a s e)

This definition ofmfoldDExp in terms offoldDExp is the result of instantiating
the definition ofmfold in terms offold for the datatypeDExp. Of course, we
could defineevalDExp in terms offoldDExp. This would require manually ex-
tracting the results of evaluating subterms from the monad before combining them
to produce the result for an entire term, rather than hiding the extraction within
the mfoldDExp combinator. For example, usingfold would require a function
add :: NState Env Int -> NState Env Int -> NState Env Int to
interpret theDAdd constructor, whereas usingmfold requires only an interpret-
ing function forDAdd with typeInt -> Int -> NState Env Int. This is a
specific instance of the general phenomenon described at theend of Section 2.

Finally, the functioncompile is written in terms ofmbuildDExp as follows:

compile = mbuildDExp g where
g v n a s (NVar x) = v x
g v n a s (NNum i) = n i
g v n a s (NAdd e1 e2) = do {x1 <- g v n a s e1;

x2 <- g v n a s e2;
a x1 x2}

g v n a s (NSet x e) = do {z <- g v n a s e; s x z}
g v n a s (NOr e1 e2) = njoin (g v n a s e1) (g v n a s e2)

njoin :: NState s a -> NState s a -> NState s a
njoin (NSt f) (NSt g) = NSt (\s -> f s ++ g s)

Here,mbuildDExp is the instantiation ofmbuild for DExp:

mbuildDExp :: Monad m =>
(forall a. (Char -> m a) -> (Int -> m a) -> (a -> a -> m a)

-> (Char -> a -> m a) -> c -> m a) -> c -> m DExp
mbuildDExp g = g (return . DVar) (return . DNum)

(return . DAdd) (return . DSet)

We can optimize the modular functionevalNExp using the instantiation of the
monadic fusion rule for the monadNState and the functor whose fixed point is
DExp. The instantiation is

mbuildDExp g x >>= mfoldDExp v n a s = g v n a s x

Fusing with this rule gives

evalNExp e
= compile e >>= evalDExp
= mbuildDExp g e >>= mfoldDExp fetch return

(\i j -> return (i+j)) update
= g fetch return (\i j -> return (i+j)) update e
= case e of

NVar x -> fetch x
NNum i -> return i
NAdd e1 e2 -> do {x1 <- evalNExp e1; x2 <- evalNExp e2;

return (x1 + x2)}
NSet x e -> do {z <- evalNExp e; update x z}
NOr e1 e2 -> njoin (evalNExp e1) (evalNExp e2)

This fused version ofevalNExp does not construct the intermediate structure of
typeNState Env DExp produced bymbuildDExp and consumed bymfoldDExp.

4 CORRECTNESS

4.1 Categorical Preliminaries

Let C be a category andF be an endofunctor onC . An F-algebra is a morphism
h : FA → A in C . The objectA is called thecarrier of the F-algebra. TheF-
algebras for a functorF are objects of a category called thecategory of F-algebras
and denotedF-A lg. A morphism fromh : F A → A to g : F B → B in F-A lg
is a morphismf : A → B such thatg ◦ F f = f ◦ h. We call such a morphism
an F-algebra morphism. If the category ofF-algebras has an initial object then
Lambek’s Lemma ensures that thisinitial F-algebra is an isomorphism, and thus
that its carrier is a fixed point ofF. Initiality ensures that the carrier of the initial
F-algebra is actually aleast fixed point ofF. If it exists, the least fixed point forF
is unique up to isomorphism. Henceforth we writeµF for the least fixed point for
F andin : F(µF) → µF for the initial F-algebra.

Within the paradigm of initial algebra semantics, every datatype is the carrier
µF of the initial algebra of a suitable endofunctorF on a suitable categoryC . The
uniqueF-algebra morphism fromin to any otherF-algebrah : F A → A is given
by the interpretationfold of thefold combinator for the interpretationµF of the
datatypeMu F. Thefold combinator forµF thus makes the following commute:

F(µF)
F(fold h) //

in
��

FA

h
��

µF
fold h // A

From this diagram, we see thatfold has type(FA → A) → µF → A and thatfold h
satisfiesfold h (in t) = h (F (fold h) t). The uniqueness of the mediating map

betweenin and h ensures that, for everyF-algebrah, the mapfold h is defined
uniquely.

As shown in [4], the carrier of the initial algebra of an endofunctor F on C

can be seen not only as the carrier of the initialF-algebra, but also as the limit of
the forgetful functorUF : F-A lg → C mapping eachF-algebrah : F A → A to A
and each morphism betweenF-algebras to itself. IfG : C → D is a functor, then
a cone τ : D → G to the baseG with vertexD is an objectD of D and a family of
morphismsτC : D → GC, one for every objectC of C , such that for every arrow
σ : A → B in C , τB = Gσ ◦ τA holds.

GA
Gσ // GB

D

τA

OO

τB

<<yyyyyyyy

We usually refer to a cone simply by its family of morphisms, rather than the
pair comprising the vertex together with the family of morphisms. A limit for
G : C → D is an object limG of D and a limiting coneν : lim G → G, i.e., a cone
ν : lim G → G with the property that ifτ : D → G is any cone, then there is a unique
morphismθ : D → lim G such thatτA = νA ◦θ for all A ∈ C .

GA
Gσ // GB

D

τA

OO
τB

;;wwwwwwwww

θ
// lim G

νA

ccGGGGGGGG
νB

OO

The characterization ofµF as limUF provides a principled derivation of the in-
terpretationbuild of thebuild combinator forµF which complements the deriva-
tion of its fold combinator from standard initial algebra semantics. It also guar-
antees the correctness of the standardfold/build rule. Indeed, the universal
property that the carrierµF of the initial F-algebra enjoys as limUF ensures:

• The projection from the limitµF to the carrier of eachF-algebra defines the
fold operator with type(FA → A) → µF → A.

• Given a coneθ : C → UF , the mediating morphism from it to the limiting
coneν : limUF → UF defines a map fromC to limUF , i.e., fromC to µF.
Since a cone to the baseUF with vertexC has type∀x.(Fx → x) → C → x,
this mediating morphism defines thebuild operator with type(∀x.(Fx →

x) →C → x) →C → µF .

• The correctness of thefold/build rule then follows from the fact thatfold k
afterbuild g is a projection after a mediating morphism, and thus is equalto
the coneg applied to the specific algebrak. We have

A

C

gk
>>

}}}}}}}}

build g
// µF

fold k

OO

4.2 A Categorical Interpretation of the Monadic Fusion Rule

The key to proving the correctness of our monadic fusion ruleis to interpret a suit-
able variant of the preceding diagram in a suitable category. Let C be a category.
A monad on C is a functorM : C → C together with two operationsbind : MA →

(A → MB)→ MB (normally written infix as>>=) andreturn : A → MA satisfying
the monad laws [9]. If M is a monad onC , then theKleisli category of M is the
categoryCM whose objects are the objects ofC , and whose morphisms fromA to
B are the morphisms fromA to MB in C . The identity morphism inCM is return,
and the composition of morphismsh : A → B and k : B → C in CM is given by
k •h = k∗ ◦h, where f ∗ is defined to beλx.(x >>= f) for any morphismf in C ,
and the computation on the right-hand side is performed inC .1

A distributive law for a monadM : C → C over a functorF : C → C is a
natural transformationδ : F M → M F. Let µA = id∗

A, and note that iff : A → MB,
then f ∗ = µB ◦M f . Also note thatM f = (return◦ f)∗. We use these well-known
facts about monads later. Supposeδ is a distributive law forM overF satisfying

δA ◦Freturn = returnFA

µFA ◦MδA ◦δMA = δA ◦FµA

We can define a functor̂F : CM → CM by F̂A = FA andF̂k = δ ◦Fk. The functor
F̂ is called themonadic extension of F by M. If k : A → B thenF̂k : F̂A → F̂B.

An M-monadic F-algebra, or MF-algebra for short, is anF̂-algebra or, equiv-
alently, a morphismh : FA → MA in C . A morphism betweenMF-algebrask1 :
FA → A andk2 : FB → B is anF̂-algebra homomorphism inCM. From the def-
inition of composition inCM, we see that such a morphism is simply a mapf :
A → MB in C such thatf ∗ ◦ k1 = k∗2 ◦δ ◦F f . The forgetful functorUMF from the
category ofMF-algebras toCM maps eachMF-algebrah : F A → A in CM to A and
each morphism betweenMF-algebras to itself. We are thus interested in the inter-
pretation, inCM, of the following variant of the diagram at the end of Section4.1:

A

C

gk
>>}}}}}}}}

mbuild g
// µF

mfold k

OO

Here,mfold andmbuild are the interpretations inCM of mfold andmbuild, re-
spectively,M is the interpretation ofm in the types ofmfold andmbuild, and
bind and return are the interpretations of the>>= andreturn operations form,
respectively. In other words, we are interested in showing that µF is the limit of
UMF in CM. Then, by the same reasoning as in Section 4.1, we would have that

• The projection from the limitµF to the carrier of eachMF-algebra would
define themfold operator mapping eacĥF-algebra with carrierA to a map

1Implicit in the notationλ x.x >>= f is the assumption thatC is cartesian closed. This
is a reasonable assumption for programming language semantics; in particular, it is a
consequence of parametricity.

from µF to A in CM, i.e., would define themfold operator with type(FA →

MA) → µF → MA in C .

• Given a coneθ : C →UMF , the mediating morphism from it to the limiting
coneν : limUMF →UMF would define a map fromC to limUMF , i.e., from
C to µF. Since such a cone maps eachF̂-algebra with carrierA to a map
from C to A in CM, it would define thembuild operator with type(∀x.(Fx →
M x) →C → M x) →C → M(µF) in C .

• The correctness of themfold/mbuild monadic fusion rule would then fol-
low from the fact thatmfold k after mbuild g is a projection after a medi-
ating morphism inCM, and thus is equal to the coneg applied to the spe-
cific algebrak. We would therefore have precisely the previous diagram for
k : F̂A → A in CM, i.e., we’d havembuild gx >>= mfold k = gk x, as desired.

So, we need to show thatµF = limUMF in CM, i.e., we need to show that i)
mfold defines a cone to the baseUMF with vertex µF. We therefore show that
p•mfold kA = mfold kB for all A andB and all morphismsp in CM from kA : FA→A
to kB : FB → B; and that ii) if g is a cone to the baseUMF with vertexC, i.e., if
p • gkA = gkB for all A andB and p as in i, thenmbuild g is the unique morphism
such that, for allA, mfold kA •mbuild g = gkA. Translating these conditions from
CM into C , we see that we need to show

i’) p∗ ◦mfold kA = mfold kB for all A andB and all morphismsp : A → MB in C

such thatp∗ ◦ kA = k∗B ◦δ ◦F p.

ii’) If p∗ ◦gkA = gkB for all A, B and p as in i’, thenmbuild g is the unique mor-
phism such that for allA, (mfold kA)∗ ◦mbuild g = gkA.

Proof of i’. We first note that, for allA, mfold kA = fold (k∗A ◦ δ). So proving i’ is
equivalent to proving that, for allA, B, andp as specified there,p∗ ◦ fold (k∗A ◦δ) =
fold (k∗B ◦δ). We first observe that

δ ◦F p∗ = δ ◦F(µ ◦Mp)
= µ ◦Mδ ◦δ ◦FMp by functoriality ofF and axioms forδ
= µ ◦Mδ ◦MF p◦δ by naturality ofδ
= (δ ◦F p)∗ ◦δ by functoriality ofM and characterization of(−)∗

Thus

k∗B ◦δ ◦F p∗ = k∗B ◦ (δ ◦F p)∗ ◦δ
= (k∗B ◦ (δ ◦F p))∗ ◦δ by the monad laws forM
= (p∗ ◦ kA)∗ ◦δ sincep is anF̂-algebra homomorphism
= p∗ ◦ k∗A ◦δ by the monad laws forM

We therefore have that

F(µF)
F(fold (k∗A◦δ))

//

in
��

FMA
F p∗ //

k∗A◦δ
��

FMB

k∗B◦δ
��

µF
fold (k∗A◦δ)

// MA
p∗ // MB

i.e., that each of the subsquares, and thus the outer square,commutes. By the
uniqueness offold we have thatp∗ ◦ fold (kA ◦ δ) = fold (kB ◦ δ), i.e., that p •

mfold kA = mfold kB as desired.

Proof of ii’. Supposeg is such that for every morphismp from kA : FA → A to
kB : FB → B in CM, we havep∗ ◦gkA = gkB . Define the mapmbuild by mbuild g =
g(return◦in) or, equivalently,mbuild g = superbuild (λα .g(return◦α)). Here, the
operatorsuperbuild is the interpretation inC of thesuperbuild combinator of
type(forall a. (f a -> a) -> c -> h a) -> c -> h (Mu f), with
fusion rulesuperbuild g >>= fold k = g k >>= id, introduced in [2]. We
first check thatmbuild g satisfies the property that, for allA, mfold kA •mbuild g =
gkA in CM, i.e.,(fold (k∗A ◦δ))∗ ◦mbuild g = gkA in C . For allc in C,

(fold (k∗A ◦δ))∗(mbuild gc)
= mbuild gc >>= fold (k∗A ◦δ)
= superbuild (λα .g(return◦α))c >>= fold (k∗A ◦δ)
= (λα .g(return◦α))(k∗A ◦δ)c >>= id
= g(return◦ k∗A ◦δ)c >>= id
= gkA c

The final equivalence follows from the facts thatg is a cone and thatid : MA → A
is a morphism inCM from theMF-algebrareturn ◦ k∗A ◦ δ : FMA → MA in CM to
theMF-algebrakA : FA → A in CM.

Next we verify thatmbuild g is the unique morphism such that, for allkA,
mfold kA •mbuild g = gkA. Supposeφ : C → µF is such thatmfold kA • φ = gkA.
We will show thatφ = mbuild g, i.e., thatφ = superbuild(λα .g(return ◦α)) by
showing thatφ satisfies the property thatsuperbuild(λα .g(return◦α)) is unique
for and thus must actuallybe superbuild(λα .g(return ◦ α)). This property is
known from [2] to be that of being a mediating morphism between theMUF-cones
g(return◦h) andM(fold h), i.e., being such that

MA

C

g(return◦h)
<<xxxxxxxxx

superbuild (g(return◦h))
// M(µF)

M(fold h)

OO

for everyh : FA → A under the assumption thatM preserves limUF (which is in-
herited from the results in that paper). So, from the fact that mfold kA •φ = gkA for
all kA, we must show that, for allh : FA → A, M(fold h)◦φ = g(return◦h). Given
such anh and anyc in C , we have that

M(fold h)(φ c) = φ c >>= return◦ (fold h) functoriality of M via >>=
= φ c >>= (fold (M h◦δ))
= φ c >>= (fold ((return ◦h)∗ ◦δ)) functoriality of M via >>=
= ((fold ((return ◦h)∗ ◦δ))∗ ◦φ)c
= (mfold ((return◦h)•φ))c
= g(return ◦h)c

The fact thatreturn◦(fold h) = fold (M h◦δ), which is used in the third equivalence
above, is a consequence of the distributivity laws and the naturality of return. Thus
φ satisfies the property for whichmbuild g is unique and so must equalmbuild g.
Both i’ and ii’ therefore hold, and soµF = limUMF in CM.

5 DUALITY

Shortage of space prevents us from giving the correspondingcoalgebraic constructs
and results in detail here, so we simply present their implementation. We have

class Comonad cm where
coreturn :: cm a -> a
(=>>) :: cm b -> (cm b -> a) -> cm a

data Nu f = Out {unOut :: f (Nu f)}

unfold :: Functor f => (a -> f a) -> a -> Nu f
unfold k = Out . fmap (unfold k) . k

cunfold :: (Comonad c, Functor f, Dist c f) =>
(c a -> f a) -> c a -> Nu f

cunfold k = unfold (\xs -> delta (xs =>> k))

cdestroy :: (Comonad c, Functor f) =>
(forall a. (c a -> f a) -> c a -> x) -> c (Nu f) -> x

cdestroy g = g (unOut . coreturn)

cunfold k c =>> cdestory g = g k c

6 CONCLUSION AND DIRECTIONS FOR FUTURE WORK

In this paper, we recalled the monadicfold, found in the literature, which con-
sumes an inductive data structure and returns a value in a monadic context. This
operator differs from the standardfold operator in that it takes as input a monadic
algebra rather than a standard algebra. We have argued that,for both aesthetic
and pratical reasons, the monadicfold operator is often preferable to the standard
fold operator.

We therefore defined a monadicbuild combinator which is parameterized
over functions which use monadic algebras to uniformly consume data structures,
and is thus the natural counterpart to the monadicfold operator. We used this
combinator to define a short cut fusion rule for eliminating from modular monadic
programs intermediate “gluing” data structures in monadiccontexts. We provided
examples showing how the monadicfold and monadicbuild combinators can
be used, and how the monadic short cut fusion rule can optimize modular programs
written using them. We also established the correctness of the monadic short cut
fusion rule. Finally, we sketched the coalgebraic duals of these operators and rule.

A number of possibilities for future work arise. At a theoretical level, we use
distributivity to construct a functor on the Kleisli category of a monad from a func-
tor on the underlying category. It would be interesting to beable to derive the
correctness of themfold and mbuild combinators directly. This would mean
proving that the Kleisli category of a monad forms a parametric model whenever
the underlying category does. In addition, both the monadicshort cut fusion rule
introduced here and thefold/msuper build rule from [2] eliminate intermediate
data structures in monadic contexts. We believe these two rules to offer distinct fu-
sion options in the presence of distributivity; it would therefore be interesting to see
which is more useful for programs that arise in practice. A final direction for future
work involves extending the results of [6, 7] to give monadicbuilds, as well as
associated fusion rules, for advanced datatypes, such as nested types, GADTs, and
dependent types. The latter seems particularly challenging, since impredicative
quantification is not supported by pure dependent type theory.

REFERENCES

[1] M. Fokkinga.Law and Order in Algorithmics. PhD thesis, Universiteit Twente, 1992.

[2] N. Ghani and P. Johann. Short cut fusion of recursive programs with computational
effects. To appear,Proceedings, TFP, 2008.

[3] N. Ghani, P. Johann, T. Uustalu, and V. Vene. Monadic augment and generalised
short cut fusion. InProceedings, ICFP, pages 294–305, 2005.

[4] N. Ghani, T. Uustalu, and V. Vene. Build, augment and destroy. Universally. In
Proceedings, APLAS, pages 327–347, 2003.

[5] A. Gill, J. Launchbury, and S. L. Peyton Jones. A short cutto deforestation. In
Proceedings, FPCA, pages 223–232, 1993.

[6] P. Johann and N. Ghani. Initial algebra semantics is enough! In Proceedings, TLCA,
pages 207–222, 2007.

[7] P. Johann and N. Ghani. Foundations for structured programming with GADTs. In
Proceedings, POPL, pages 297–308, 2008.

[8] C. Jürgensen. Using monads to fuse recursive programs (extended abstract), 2002.

[9] S. MacLane.Categories for the Working Mathematician. Springer, 1971.

[10] E. Meijer and J. Juering. Merging monads and folds for functional programming. In
Proceedings, AFP, pages 228–266, 1995.

[11] A. Pardo. Fusion of recursive programs with computational effects. Theoretical
Computer Science, 260(1-2):165–207, 2001.

[12] J. Voigtländer. Asymptotic improvement of computations over free monads. InPro-
ceedings, MPC, pages 388–403, 2008.

