Monadic Fold, Monadic Build, Monadic Short Cut Fusion

A research paper by Patricia Johann and Neil Ghani

Abstract

Short cut fusion improves the efficiency of modularly consted programs by elim-
inating intermediate data structures produced by one progromponent and im-
mediately consumed by another. We define a combinator whiptesses uniform
production of data structures in monadic contexts, anddsgtural counterpart to
the well-known monadi€ ol d which consumes them. Like the monaélia! d, our
new combinator quantifies over monadic algebras ratherdtaaliard ones. Together
with the monadid ol d, it gives rise to a new short cut fusion rule for eliminating
intermediate data structures in monadic contexts. Thisméndiffers significantly
from previous short cut fusion rules, all of which are basaccombinators which
guantify over standard, rather than monadic, algebras. Véeegamples illustrating
the benefits of quantifying over monadic algebras, provenewr fusion rule correct,
and show how it can improve programs. We also consider itigebeaic dual.

1 THE PROBLEM

Consider the following variation on the well-known problaerhfusing modular
list-processing functions [5]. Suppose we want to sum theswf all the integers
in a list. Suppose further that cubing any of the integerfénlist can generate an
out-of-range error, and that each of the partial sums of thédes can also gener-
ate an out-of-range error. If out-of-range errors are tekie usingout Of Range

Int -> Maybe Int, where the datatypdat a Maybe a = Not hing |
Just a is the standard error-handling monad given in the Haskelupe, then
it is natural to write this program as the composition of twadtions: i) a func-
tion mmapcube :: [Int] -> Maybe [Int] which checks whether the cube
of any integer in its input list generates an out-of-rangereand, if so, propagates
the error, and ii) a functiomsum :: [Int] -> Maybe | nt which sums the
elements of a list of integers, checking along the way whetlaeh accumulated
partial sum generates an out-of-range error. We'd have

msunf Cubes xs = mmapcube xs >>= nsum

whereNot hi ng >>= k = Not hi ng andJust x >>= k = k x, as usual.

If we want to optimize this program by eliminating the intexdmate structure of
typeMaybe [nt] produced bymmapcube and consumed byx -> x >>= nsum
then we might look to the standard short cut — @), d/bui | d — fusion rule [5]
for inspiration. Recalling that>= is the analogue of composition for monadic
computations, we first observe that the pure analogeesube andsumof the
monadic functiongmapcube andnsumabove can be written in terms of the well-
known uniform list-consuming and -producing functidns dr andbui | d given
in Figure 1. Lettingcube x = x * x * x we have

mapcube :: [Int] -> [Int]
mapcube xs = build (\c n -> foldr (c . cube) n xs)

*University of Strathclyde, Glasgow, Scotlan@atri ci a, ng}@i s. strat h. ac. uk.

foldr :: (b->a->a) ->a->[b] ->a

foldr ¢ n[] =n

foldr ¢ n (x:xs) =c¢ x (foldr ¢ n xs)

build :: (forall a. (b->a->a) ->a->a) ->[Db]
build g =g (:) []

foldr ¢ n (build g0 =g cn

FIGURE 1. Thefol dr and bui | d combinatorsand f ol dr /bui | d rulefor lists.

sum:: [Int] -> Int
sum= foldr (+) O

The composition ofrapcube andsumgives a non-error-checking versionmafapcube
which be fused via théol dr /bui | d rule, also given in Figure 1, as follows:

= foldr (+) O

(build (\¢c n -> foldr (c . cube) n xs))
(\¢c n->foldr (c . cube) nxs) (+) O
foldr ((+) cube) 0 xs

sum (mapcube xs)

Note that the intermediate list produced iypcube and immediately consumed

by sumin sum (mapcube xs) is not constructed by the fused program.

In the monadic setting we wish to eliminate not just the mediate list of
cubes, but rather an entire intermediate structure of bgye [Int]. In gen-
eral, in the monadic setting we seek to eliminate not jugirinediate data struc-
tures, but intermediate data structurgighin monadic contexts. In the case of
msunmOf Cubes we can write the monadic consumerumin terms of the standard
f ol d combinator for lists. Indeed we have

nsum = foldr (\x p -> do {v <- p; z <- out*Range X
out 0f Range (z + v)}) (Just 0)

But we cannot similarly write the monadic produgeruncube in terms of the
standardbui | d combinator for lists. The difficulty is thatui | d produces a list
of type[t], whereasrsuntube produces a structure of typeaybe [t]. Itis
thus unclear how to writesunf Cubes in terms off ol d andbui | d for lists, or
how to fusemsunf Cubes using standard short cut fusion. And althougfi d
andbui | d combinators and short cut fusion rules can be defined getigrior
all inductive types as in Figure 2, they are also unsuitaiméusingns unof Cubes
becauséaybe [t] is not aninductive type except in a trivial way.

The central question considered in this paper is whetheotthere is a variant
of short cut fusion which can fuse modular monadic prograkess unf Cubes.
We answer in the affirmative by first giving a monadig | d combinator to com-
plement the monaditol d combinator from the literature [1, 10, 11] in the same
way that the standardui | d combinator complements the standérd d combi-
nator. We then give a monadic short cut rule for fusing monadimpositions (i.e.,

newtype Mu f = 1In {unln :: f (M f)}

fold :: Functor f => (f a->a) ->MIf ->a
fold h (In k) =h (fmap (fold h) k)

build :: Functor f =>
(forall a. (f a->a) ->c->a) ->c ->Mf

build g =g In

fold k . build g =gk

FIGURE 2. Thef ol d and bui | d combinatorsand f ol d/bui | d rule.

bi nds) of functions written in terms of monadio! d andbui | d, and show how
it solves thensunf Cubes problem outlined above. Finally, we prove the cor-
rectness of our monadic short cut fusion rule. Our monadigslipators and short
cut fusion rule are given in Figure 3 and explained in Secldh As we shall
see later, their conceptual basis lies in the observatiat) itha monadic setting, it
is fruitful to consider not just standard algebras — i.erepuinctionsf a -> a
wheref is the functor underlying the datatype of the inductive e to be elim-
inated “in context” — but rathemonadic algebras, i.e., functionsf a -> ma
wheremis the monad in question. Just as the monédicd combinator consumes
monadic, rather than standard, algebras, so the mobadicd combinator intro-
duced herein quantifies over monadic, rather than standiyehras. Our monadic
short cut fusion rule thus eliminates not just intermedéztta structures, likgt],
but also intermediate structures situated in monadic gtstkke Maybe [t].

The remainder of this paper is structured as follows. IniBe@ we discuss
background and related work; in particular we consider ¢hetive merits of struc-
turing code using standarfcbl d and monadid ol d. In Section 3 we apply our
monadic fusion rule to a larger application, namely an prieter for nondetermin-
istic expressions. In Section 4 we prove our main result,ctreectness of our
monadic fusion rule. In Section 5 we consider its coalgebdaial. Finally, in
Section 6 we set out some directions for future work and catel

2 BACKGROUND AND RELATED WORK
2.1 Short Cut Fusion for Inductive Types

Inductive datatypes are fixed points of functors. Functars ke implemented in
Haskell as type constructors supportingap functions as follows:

class Functor f where
frmap :: (a->b) ->f a->f b

The functionf map is expected to satisfy the two semantic functor laws stating
thatf map preserves identities and composition. It is well-knowr #raalogues of
f ol dr exist for every inductive datatype. As shown in [3, 4], evieiguctive type
also has an associated generalized! d combinator and ol d/bui | d rule; these

nfold :: (Functor f, Monad m Dist f m =>
(f a->ma) ->Mif ->ma
nfold h = fold (\xs -> delta xs >>= h)

nbuild :: (Functor f, Monad m) => (forall a.
(f a->ma) ->c ->ma) ->c¢c ->m(M f)
nbuild g = g (return . In)

nmbuild g ¢ >>= nfold h =g h c

FIGURE 3. Thenf ol d and nbui | d combinatorsand nf ol d/nbui | d rule.

can be implemented generically in Haskell as in Figure 2.r@Mu f represents
the least fixed point of the functdr, andl n represents the structure map far
i.e., the “bundled” constructors for the datatyide f. The “extra” typec in the
type of bui | d is motivated in citegjuv05,guv03 and to lesser extent intiSect
below. Thef ol d/bui | d rule for inductive types can be used to eliminate data
structures of typewu f from computations. Théol dr andbui | d combinators
for lists can be recovered by takihgo be the functor whose fixed point[ig] ; the

f ol dr /bui | d rule can be recovered by taking, in additierto be the unit type.

2.2 Short Cut Fusion in the Presence of Monads

Monads model a variety of computational effects. They afgémented in Haskell
as type constructors supporting= andr et ur n operations as follows:

cl ass Monad m where
return :: a ->ma
(>>=) :: ma->(a->mb) ->mb

These operations are expected to satisfy the semantic nenado].

The monadid ol d combinatomf ol d given in Figure 3 is well-known [1, 10,
11]. Itis defined in terms of the standdrd| d and a distributivity landel ta : :
f (ma) -> m(f a) which describes how the results of monadic computations
embodied bymon components of a data structure described by a furictare
propagated to the overall data structure; distributivitys$ can be implemented in
Haskell using the claga st f mof types, each of which supports a distributivity
law forf andm But, until now, a monadibui | d which complements the monadic
f ol d in the same way that the standardi | d complements the standafal d
has not been given. Thus, although monadic fusion has beediedtby other
researchers [8, 10, 11, 12], all techniques developed tusvolve the standard
f ol d rather than its monadic counterpart. In particular, a mansitbrt cut fusion
rule —i.e., a short cut rule for programs expressed in terinmsomadicf ol d and
monadicbui | d — has until now not been studied.

To define a monadibui | d combinator we first observe that the functional ar-
gument to such aui | d, and thus the monadtwi | d combinator itself, must have
a monadic return type. Moreover, just as we expect the fonstihe monaditol d

nfoldl :: Monad m=> (Int ->a ->ma) ->
ma ->[Int] -> ma
nfoldl ¢ n=foldr (\ i y->do {v <-y; ci v})n

nbuildl :: (forall a. (Int ->a ->ma) ->ma ->
cC->ma) ->c¢c ->m[lInt]
mbuildl g =g (\ Xy ->return (x:y)) (return [])

nbuildl g k >>= nfoldl c n=gcnk

FIGURE 4. Thenf ol dl and nbui | dIl combinatorsand nf ol dl /mbui | dI rule.

combinator uses to consume a data structure to have morgtdim itypes, we
also expect the monadiwi | d combinator to quantify over all uses of functions
with monadic return types to consume such structures. €hids us to define the
monadicbui | d combinatombui | d given in Figure 3. Then, to optimize modular
programs constructed from these combinators we can alsmlinte the monadic
short cut fusion rule fonf ol d andrbui | d given there. Unlike the monadic fu-
sion rule of [11], which eliminates the data structure bavés the monadic context
in which it is situated intact, the rule in Figure 3 eliminateoth the entire inter-
mediate data structure and its entire monadic context. ®treatness of this rule

is the main result of this paper. We prove it in Section 4 below

To demonstrate the monadic combinators and fusion rule se¢hem to solve
themsunmOf Cubes problem from the introduction. We can specialize the combin
torsand rule in Figure 3th x = N| C Int x, m= Mybe, and

delta N = Just N
delta (Ci y) =do {v <- y; Just (Ci v)}

to get the constructs in Figure 4. We have
msum = nfoldl (\x y -> outOf Range (x + y)) (return 0)

nmapcube = nbuildl g where
g:: (Int ->a -> Maybe a) -> Maybe a -> [Int] -> Maybe a

gcnl] =n
gcn(v:vs) =do {k <- outO Range (cube v); z <- g ¢ n vs;
c k z}

Applying the monadic fusion rule from Figure 448 unCf Cubes gives

msunf Cubes xs nmapcube xs >>= msuUum
nmbui I dl g xs >>=
nfoldl (\x y -> outOFRange (x + y)) (return 0)

g (\x y ->outORange (x + vy)) (return 0) xs

Thus

nsunf Cubes []
msunmcf Cubes (v:vs)

return O

do {k <- out Of Range (cube v);
z <- nsum Cubes vs;
out 0 Range (k + z)}

This fused version performs its range checks “on the fly"eathan prior to sum-
ming the cubes of the elements of its input list, and abodsstimming computa-
tion if any individual element ofs or any of its partial sums is out-of-range.

We now discuss the relative merits of structuring code Withd versus with
nf ol d. This s critical, since the usefulness of atrui | d combinator andf ol d/
mbui | d fusion rule depends on that of théol d combinator. It turns out that we
can write consumers likesumin terms of eithemf ol d or f ol d. Indeed, every
standard algebra a - > a can be turned into a monadic one and, in the presence
of distributivity, every monadic algebra can be turned iatstandard one. So,
in the presence of distributivity,ol d andnf ol d are equally expressive. Which,
then, should we prefer?

Both of these combinators recursively act on the subternagefm to produce
results which are of monadic type. The standaodld combinator then uses an
algebra of typd (m a) -> m a to combine these results into an overall result
for the original term. The carrier of the standdrdl d’s algebra ism a, which
means that the programmer must specify how the monadicxtsrgenerated by
the recursive calls will be propagated to the original teBwy.contrast, thexf ol d
combinator is used together with a distributivity law, whasle is precisely to
achieve this propagation. The role of the monadic algebtgpeff a -> m ais
thus to describe howure values can be combined and/or generate new effects.

Thus, there is a trade-off between structuring code withd#tedf ol ds and
monadicf ol ds. Using thenf ol d combinator frees the programmer from having
to manually propagate the monadic contexts produced byethersive subcalls.
The price paid is having to provide a distributivity law umtit. Thus, in the
presence of an appropriate distributivity law, programgnian proceed as if the
recursive calls produced pure, rather than monadic, caatipos. This seems an
excellent trade: it is easier to modularize the problem anbly a monadic alge-
bra than to supply a standard algebra with a monadic cafBigrcontrast, using
the standard ol d essentially amounts to programming by hand the plumbing tha
nf ol d does automatically. Thus, were we to udsd d rather thanmnf ol d, we
would in effect be hardwiring the definition af ol d in terms off ol d into every
algebra supplied tbol d. Abstracting common patterns of recursion into combi-
nators — asif ol d does — is widely recognised as key to writing clear, concise,
and correct code, so we advocate using the monadic apprdastewer possible.

3 APPLICATION: EVALUATING NONDETERMINISTIC EXPRESSIONS

Consider the following datatype of nondeterministic esgiens:

data NExp = NVar Char | NNum Int | NAdd NExp NEXp
| NSet Char NExp | NO NExp NEXp

The first three clauses of this definition represent varghitgegers, and sums. Ex-
pressions of the formiSet ¢ e assign the value of to the variable with name
c, and those of the formir el e2 represent the nondeterministic choiceeaf

or e2. An evaluator for nondeterministic expressions must keagktof both the
environment with respect to which the expression is evathaind the nondeter-
minism introduced by th8lOr constructor. Computations involving environments
can be modeled by the state monad, while those involving etenchinism can be
modeled by the list monad. The canonical way to model contipa involving
both is to apply the state monad transformer to the list momag gives

newtype NState s a = NSt {runNState :: s ->[(a,s)]}

i nstance Monad (NState s) where

return x = NSt (\s ->[(x,s5)])
NSt f >>= g = NSt (\s ->
concat [runNState (g v) s | (v, s') < f s])

The type of an evaluat@val NExp for nondeterministic expressionseigal NExp
:: NExp -> NState Env Int, wheretype Env = Char -> Int defines
a type of environments mapping variable names to integeregal We construct
eval NExp as a composition of two functions. The first one, catledpi | e, takes
as input a nondeterministic expression and returns a lisixpfessions not con-
taining theNOr constructor; we say that such expressiongdaterministic. Rather
than usingNExp to represent both determinstic expressions and nondetistii
ones — thereby leaving the determinism constraint impdicihe meta-level — we
introduce an object-level datatype to represent detestigrexpressions. We have

data DExp = DVar Char | DNum I nt
| DAdd DExp DExp | DSet Char DExp

Thusconpi | e hastypeNExp -> NSt at e Env DExp. The second function used
to constructeval NExp is an evaluatoeval DExp :: DExp -> NState Env

I nt for deterministic expressions. In essence, the modulamaph reduces the
problem of constructing an evaulator for nondeterminiekpressions to the prob-
lem of constructing one for deterministic expressions. \Afeh

eval NExp e = conpile e >>= eval DExp

We can writeeval DExp using the instance off ol d for DExp. We have
eval DExp = nfol dDExp fetch return (\i j -> return (i+j)) update
where

fetch :: Char -> NState Env Int
fetch ¢ = NSt (\env -> [(env c, env)])

looks up the value of a variable in the current environment an

update :: Char -> Int -> NState Env Int
update ¢ i = Nst (\e -> [(i, \¢c’ ->if ¢c ==c¢c theni else e c')])

makes a new environment which is obtained from the curreatbynupdating the
binding for the variable toi . In addition,

nfol dDExp :: Mmnad m=> (Char -> ma) -> (Int -> ma) ->
(a->a->ma) -> (Char ->a ->ma) ->
DExp -> ma
nfol dDExp v n a s = foldDExp v n
(\el e2 -> do {x1 <- el; x2 <- e2; a x1 x2})
(\i e ->do {x <- e; si x})

is defined in terms of the instance of the standartdd combinator forDExp:

foldDExp :: (Char ->a) -> (Int ->a) ->(a->a->a) ->
(Char -> a ->a) -> DExp -> a

foldDExp v n a s (DVar x) =V X
foldDExp v n a s (DNumi) =n i
foldDExp v n a s (DAdd el e2) = a (foldDExp v n a s el)

(foldDExp v n a s e2)

foldDExp v n a s (DSet x e) =s X (foldDExp v n a s e)

(7]

This definition ofnf ol dDExp in terms off ol dDExp is the result of instantiating
the definition ofnf ol d in terms off ol d for the datatypebExp. Of course, we
could defineeval DExp in terms off ol dDExp. This would require manually ex-
tracting the results of evaluating subterms from the moradrb combining them
to produce the result for an entire term, rather than hidimgdxtraction within
the nf ol dDExp combinator. For example, usirfgl d would require a function
add :: NState Env Int -> NState Env Int -> NState Env Int to

interpret theDAdd constructor, whereas using ol d requires only an interpret-
ing function forDAdd with typelnt -> Int -> NState Env Int. Thisis a

specific instance of the general phenomenon described ahthef Section 2.
Finally, the functionconpi | e is written in terms ofrbui | dDExp as follows:

conpil e = nbuil dDExp g where
gvnas (Nar x) =v X
gvnas (NNumi) =nii
gVvnas (NAAd el e2) =do {x1 <- gv n as el
X2 <- gvnas ez
a x1 x2}
gvnas (NSet xe) =do{z<- gvnase s x z}
gvnas (Nx el e2) =njoin(gvnasel) (gvnase2)
njoin :: NState s a -> NState s a -> NState s a

njoin (NSt f) (NSt g0 = NSt (\s ->f s ++ g s)
Here,nbui | dDExp is the instantiation ofrbui | d for DExp:

nbui | dDExp :: Monad m =>
(forall a. (Char ->ma) -> (Int ->ma) ->(a->a->ma)
-> (Char ->a ->ma) ->c¢c ->ma) ->c -> mDExp
nbui | dDExp g = g (return . DVar) (return . DNum
(return . DAdd) (return . DSet)

We can optimize the modular functi@val NExp using the instantiation of the
monadic fusion rule for the monadst at e and the functor whose fixed point is
DExp. The instantiation is

nbui dDExp g x >>= nfoldDExp v n a s =g v nas X
Fusing with this rule gives

eval NExp e
conpi l e e >>= eval DExp
nbui | dDExp g e >>= nfol dDExp fetch return

(Vi j ->return (i+j)) update
= g fetch return (\i j ->return (i+j)) update e
= case e of
Nvar x -> fetch x
NNum i ->return i

NAdd el e2 -> do {x1 <- eval NExp el; x2 <- eval NExp e2;
return (x1 + x2)}

NSet x e -> do {z <- eval NExp e; update x z}

NO el e2 -> njoin (eval NExp el) (eval NExp e2)

This fused version oéval NExp does not construct the intermediate structure of
typeNst at e Env DExp produced byrbui | dDExp and consumed hyf ol dDExp.

4 CORRECTNESS
4.1 Categorical Preliminaries

Let ¥ be a category anBl be an endofunctor o#’. An F-algebra is a morphism
h:FA— Ain %. The objectA is called thecarrier of the F-algebra. TheF-
algebras for a functdf are objects of a category called ttetegory of F-algebras
and denoted--<7/1g. A morphism fromh: FA —- Atog:FB — Bin F-</lg

is @ morphismf : A — B such thatgo Ff = f oh. We call such a morphism
an F-algebra morphism. If the category ofF-algebras has an initial object then
Lambek’s Lemma ensures that thistial F-algebra is an isomorphism, and thus
that its carrier is a fixed point d¥. Initiality ensures that the carrier of the initial
F-algebra is actually keast fixed point ofF. If it exists, the least fixed point fd¥

is unigue up to isomorphism. Henceforth we wiité for the least fixed point for
F andin: F(uF) — pF for the initial F-algebra.

Within the paradigm of initial algebra semantics, everyatigie is the carrier
UF of the initial algebra of a suitable endofuncteon a suitable category’. The
uniqueF-algebra morphism fronmn to any other~-algebrah : FA — A'is given
by the interpretatioriold of thef ol d combinator for the interpretationF of the
datatypeMu F. Thefold combinator foruF thus makes the following commute:

F(foldh
F(uF) 29 A

inl ‘/h
foldh

HF A

From this diagram, we see thatd has typeg FA — A) — uF — A and thaffold h
satisfiesfold h (int) = h (F (fold h) t). The uniqueness of the mediating map

betweenin and h ensures that, for everly-algebrah, the mapfoldh is defined
uniquely.

As shown in [4], the carrier of the initial algebra of an endwftor F on ¢
can be seen not only as the carrier of the iniiaalgebra, but also as the limit of
the forgetful functolUr : F-&7Ig — ¥ mapping eacl-algebrah: FA — Ato A
and each morphism betweé&nalgebras to itself. If5: ¢ — 2 is a functor, then
acone T : D — G to the basés with vertexD is an objectD of 2 and a family of
morphismstc : D — GC, one for every object of ¥, such that for every arrow
0:A—Bin¥, 13 = Goo1p holds.

GA—2%.GB

| A

D

We usually refer to a cone simply by its family of morphismather than the
pair comprising the vertex together with the family of magshs. A limit for
G: % — 2 is an object linG of Z and a limiting conev : lim G — G, i.e., a cone

v : lim G — G with the property that if : D — G is any cone, then there is a unique
morphism® : D — lim G such thatta = vao 6 forall A€ €.

GA—2-GB

The characterization gfF as limUg provides a principled derivation of the in-
terpretatiorbuild of thebui | d combinator foruF which complements the deriva-
tion of its fold combinator from standard initial algebra semantics. b @aar-
antees the correctness of the standastid/bui | d rule. Indeed, the universal
property that the carriquF of the initial F-algebra enjoys as lilde ensures:

e The projection from the limiuF to the carrier of eack-algebra defines the
fold operator with typd FA — A) — uF — A.

e Given a con&d : C — Ug, the mediating morphism from it to the limiting
conev : limUg — Ug defines a map frorT to limUg, i.e., fromC to uF.
Since a cone to the bakk with vertexC has typevx.(Fx — x) — C — X,
this mediating morphism defines tieild operator with type(vx. (Fx —
X) - C—Xx) - C— uF.

e The correctness of theol d/bui | d rule then follows from the fact théold k
afterbuildg is a projection after a mediating morphism, and thus is etqual
the coneg applied to the specific algebka We have

A
gk Tfoldk
[a——y

buildg

4.2 A Categorical Interpretation of the Monadic Fusion Rule

The key to proving the correctness of our monadic fusionigite interpret a suit-
able variant of the preceding diagram in a suitable catedoey% be a category.
A monad on %’ is a functorM : ¥ — ¥ together with two operationsind : MA —
(A— MB) — MB (normally written infix as>>=) andreturn : A— MA satisfying
the monad laws [9]. If M is a monad or¥’, then theKleidli category of M is the
categorysu whose objects are the objects@f and whose morphisms fromto
B are the morphisms frorA to MB in ©’. The identity morphism i), is return,
and the composition of morphisnis: A — B andk : B — C in %y is given by
keh = k*oh, wheref* is defined to be\ x.(x >= f) for any morphismf in ¢,
and the computation on the right-hand side is performeg.in

A didtributive law for a monadM : ¥ — % over a functorF : € — % is a
natural transformatiod : FM — MF. Let ua = idy, and note that iff : A— MB,
then f* = ugo M f. Also note thaM f = (returno f)*. We use these well-known
facts about monads later. Suppdses a distributive law fotM overF satisfying

OnoFreturn = returnga
HFaoMOpodva = OaoFUa

We can define a functdf : 4y — %y by FA = FA andFk = & o Fk. The functor
F is called themonadic extension of F by M. If k: A— BthenFk: FA— FB.

An M-monadic F-algebra, or MF-algebra for short, is ar--algebra or, equiv-
alently, a morphisnh : FA — MAin . A morphism betweeMF-algebrask; :
FA — A andk, : FB — B is anF-algebra homomorphism itfyy. From the def-
inition of composition in%y, we see that such a morphism is simply a nfap
A— MBin ¥ such thatf* ok; =k} 0 d o F f. The forgetful functotdye from the
category oMF-algebras t&) maps eaciF-algebrah: FA— Ain %y to Aand
each morphism betwedviF-algebras to itself. We are thus interested in the inter-
pretation, in%y, of the following variant of the diagram at the end of Sectoh:

A
Tmfoldk

C WQUF
Here,mfold and mbuild are the interpretations i of nf ol d andnbui | d, re-
spectively,M is the interpretation ofmin the types ofnf ol d andnbui | d, and
bind andreturn are the interpretations of the>= andr et ur n operations form
respectively. In other words, we are interested in showhad iF is the limit of
Uwme in %u. Then, by the same reasoning as in Section 4.1, we would have t

e The projection from the limiuF to the carrier of eacMF-algebra would
define themfold operator mapping eadh-algebra with carrieA to a map

Hmplicit in the notationA x.x >>= f is the assumption th&f is cartesian closed. This
is a reasonable assumption for programming language sesiantparticular, it is a
consequence of parametricity.

from uF to Ain %\, i.e., would define thenfold operator with typgFA —
MA) — uF — MAin €.

e Given a cond : C — Uyg, the mediating morphism from it to the limiting
conev : limUuyr — Ume would define a map fror® to limUyg, i.e., from
C to uF. Since such a cone maps edéetalgebra with carrieA to a map
from Cto Ain %, it would define thembuild operator with typéVvx. (Fx —
Mx) - C—Mx) - C— M(uF)in%.

e The correctness of thef ol d/mbui | d monadic fusion rule would then fol-
low from the fact thatmfoldk after mbuildg is a projection after a medi-
ating morphism iy, and thus is equal to the comgeapplied to the spe-
cific algebrak. We would therefore have precisely the previous diagram for
k:FA— Ain %, i.e., we'd havembuildgx = mfoldk = gkx, as desired.

So, we need to show thatF = limUyge in %y, i.e., we need to show that i)
mfold defines a cone to the bakkyr with vertex uF. We therefore show that
pe mfoldka = mfoldkg for all AandB and all morphismg in %y fromka : FA— A
to kg : FB — B; and that ii) ifg is a cone to the badéyr with vertexC, i.e., if
pe gk, = O for all AandB and p as in i, thenmbuildg is the unique morphism
such that, for allA, mfoldka e mbuildg = gka. Translating these conditions from
%wm into €, we see that we need to show

i) p*omfoldka = mfoldkg for all A andB and all morphism$: A — MBin %
such thatp* oka = ko doFp.

ii") If p*ogy, =0k forall A,Bandpas ini’, thenmbuildg is the uniqgue mor-
phism such that for al\, (mfoldka)* o mbuildg = gka.

Proof of i’. We first note that, for alh, mfoldka = fold (k3 0 8). So proving i’ is
equivalent to proving that, for al\, B, andp as specified therg* ofold (ky0d) =
fold (kg 0 0). We first observe that

0oFp* = JoF(uoMp)

UoMdodoFMp by functoriality of F and axioms fo®
HoMdOoMFpod by naturality ofd

= (6oFp)*od by functoriality ofM and characterization d¢f)*

Thus
kiodoFp* = kio(doFp)*od
= (kio(80oFp))*od by the monad laws fav
= (p*oka)*od sincepis anF-algebra homomorphism
= p*okyod by the monad laws fav
We therefore have that

F (fold (ki 00 Fp*
Fur) 2% A 2 evs

i T
fold (k0o *
uF P P B

i.e., that each of the subsquares, and thus the outer squaamemutes. By the
uniqueness ofold we have thatp* o fold (ka 0 8) = fold (kg 0 9), i.e., thatpe
mfoldka = mfoldkg as desired.

Proof of ii’. Supposeg is such that for every morphismp from ka : FA — A to
ks : FB — B in %y, we havep* o gk, = gk, Define the mapnbuild by mbuildg =
g(returnoin) or, equivalentlymbuild g = superbuild (A a.g(returnoa)). Here, the
operatorsuperbuild is the interpretation ir¥’ of the super bui | d combinator of
type(forall a. (f a->a) ->c ->ha) ->c ->h (M f),with
fusionrulesuperbuild g >>= fold k = g k >>= id,introduced in[2]. We
first check thambuildg satisfies the property that, for &l mfold ks e mbuildg =
Ok, iN G, i.e., (fold (ky 0 8))* ombuildg = gk, in €. ForallcinC,

(fold (ky 0 0))* (mbuildgc)
= mbuildgc >= fold(kj09)
superbuild (A a.g(returnoa))c >= fold (k} 0 d)
(Aa.g(returnoa)) (kyod)c >=id
= g(returnokzod)c >=id
= gkAC

The final equivalence follows from the facts tltgis a cone and thatl : MA — A
is a morphism iriéy from theMF-algebrareturnokz o8 : FMA — MAin éy to
the MF-algebraka : FA— Ain %u.

Next we verify thatmbuildg is the unique morphism such that, for aka,
mfoldka e mbuildg = gka. Supposep : C — uF is such thaimfoldka e ¢ = gka.
We will show thatg = mbuildg, i.e., thatg = superbuild(Aa.g(returno a)) by
showing thatp satisfies the property thatiperbuild(A a.g(returno a)) is unique
for and thus must actuallppe superbuild(A a.g(returno a)). This property is
known from [2] to be that of being a mediating morphism betw#®MUg-cones
g(returnoh) andM(foldh), i.e., being such that

MA
glreturneh) TM(foId h)
supgbuild (g(rlc}t/Lljgr%fE)?

for everyh : FA — A under the assumption thit preserves lifdg (which is in-
herited from the results in that paper). So, from the fadtitifald ks e @ = gka for
all ka, we must show that, for ali: FA — A, M(foldh)o ¢ = g(returnoh). Given
such arh and anyc in ', we have that

M(foldh)(¢c) = ¢@c>>=returno(foldh) functoriality of M via >>=
pc>= (fold(Mhod))

@c>= (fold((returnoh)* 0 §)) functoriality of M via >>=
((fold ((returnoh)* o d))* o @)

(mfold ((returnoh) e))c

= g(returnoh)c

The fact thateturno (foldh) = fold (M ho &), which is used in the third equivalence
above, is a consequence of the distributivity laws and therakity of return. Thus

@ satisfies the property for whiambuildg is unique and so must equabuildg.
Both i’ and ii’ therefore hold, and spF = limUyg in .

5 DUALITY

Shortage of space prevents us from giving the correspomdialgebraic constructs
and results in detail here, so we simply present their implaation. We have

cl ass Cononad cm where
coreturn :: cma -> a
(=>>) . cmb -> (cmb ->a) ->cma

data Nu f = Qut {unQut :: f (Nu f)}

unfold :: Functor f => (a ->f a) ->a -> Nu f
unfold k = Qut . fmap (unfold k) . k

cunfold :: (Cononad c¢, Functor f, Dist ¢ f) =>
(ca->f a) ->ca->Nuf
cunfold k = unfold (\xs -> delta (xs =>> k))

cdestroy :: (Conobnad c, Functor f) =>
(forall a. (ca->f a) ->ca->x) ->c¢c (Nuf) ->x
cdestroy g = g (unQut . coreturn)

cunfold k ¢ =>> cdestory g =g k ¢

6 CONCLUSION AND DIRECTIONSFOR FUTURE WORK

In this paper, we recalled the monadiol d, found in the literature, which con-
sumes an inductive data structure and returns a value in adiwoontext. This
operator differs from the standafd! d operator in that it takes as input a monadic
algebra rather than a standard algebra. We have argueddh#ipth aesthetic
and pratical reasons, the monaflid d operator is often preferable to the standard
f ol d operator.

We therefore defined a monadiai | d combinator which is parameterized
over functions which use monadic algebras to uniformly cams data structures,
and is thus the natural counterpart to the monaaicd operator. We used this
combinator to define a short cut fusion rule for eliminating modular monadic
programs intermediate “gluing” data structures in monadictexts. We provided
examples showing how the monadiol d and monadicui | d combinators can
be used, and how the monadic short cut fusion rule can ogtimzdular programs
written using them. We also established the correctnesseofmionadic short cut
fusion rule. Finally, we sketched the coalgebraic dualhie$¢ operators and rule.

A number of possibilities for future work arise. At a thedeet level, we use
distributivity to construct a functor on the Kleisli categmf a monad from a func-
tor on the underlying category. It would be interesting todiée to derive the
correctness of thef ol d and nbui | d combinators directly. This would mean
proving that the Kleisli category of a monad forms a parametrodel whenever
the underlying category does. In addition, both the monalart cut fusion rule
introduced here and thel d/msuper bui | d rule from [2] eliminate intermediate
data structures in monadic contexts. We believe these tigs ta offer distinct fu-
sion options in the presence of distributivity; it would tbfore be interesting to see
which is more useful for programs that arise in practice. Alfdirection for future
work involves extending the results of [6, 7] to give monallid | ds, as well as
associated fusion rules, for advanced datatypes, suctstedngpes, GADTs, and
dependent types. The latter seems particularly challgngimce impredicative
guantification is not supported by pure dependent type yheor

REFERENCES

[1] M. Fokkinga.Law and Order in Algorithmics. PhD thesis, Universiteit Twente, 1992.

[2] N. Ghani and P. Johann. Short cut fusion of recursive g with computational
effects. To appeaPRroceedings, TFP, 2008.

[3] N. Ghani, P. Johann, T. Uustalu, and V. Vene. Monadic aemgnand generalised
short cut fusion. IrProceedings, ICFP, pages 294-305, 2005.

[4] N. Ghani, T. Uustalu, and V. Vene. Build, augment and aBstUniversally. In
Proceedings, APLAS, pages 327—-347, 2003.

[5] A. Gill, J. Launchbury, and S. L. Peyton Jones. A short tmutleforestation. In
Proceedings, FPCA, pages 223-232, 1993.

[6] P.Johann and N. Ghani. Initial algebra semantics is ghbin Proceedings, TLCA,
pages 207-222, 2007.

[7] P. Johann and N. Ghani. Foundations for structured progning with GADTS. In
Proceedings, POPL, pages 297-308, 2008.

[8] C. Jurgensen. Using monads to fuse recursive prograrter{ded abstract), 2002.
[9] S. MacLaneCategoriesfor the Working Mathematician. Springer, 1971.

[10] E. Meijer and J. Juering. Merging monads and folds ferctional programming. In
Proceedings, AFP, pages 228-266, 1995.

[11] A. Pardo. Fusion of recursive programs with computaioeffects. Theoretical
Computer Science, 260(1-2):165-207, 2001.

[12] J. Voigtlander. Asymptotic improvement of computets over free monads. FPro-
ceedings, MPC, pages 388-403, 2008.

