{VERSION 3 0 "APPLE_68K_MAC" "3.0" } {USTYLETAB {CSTYLE "Maple Input" -1 0 "Courier" 0 1 255 0 0 1 0 1 0 0 1 0 0 0 0 }{CSTYLE "2D Math" -1 2 "Times" 0 1 0 0 0 0 0 0 2 0 0 0 0 0 0 }{CSTYLE "2D Output" 2 20 "" 0 1 0 0 255 1 0 0 0 0 0 0 0 0 0 } {CSTYLE "" -1 256 "" 1 14 0 0 0 0 0 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 257 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 281 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 }{CSTYLE "" -1 282 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 }{CSTYLE "" -1 283 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 }{CSTYLE "" -1 284 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 }{CSTYLE "" -1 285 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 }{CSTYLE "" -1 302 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 }{CSTYLE "" -1 303 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 }{CSTYLE "" -1 304 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 }{CSTYLE "" -1 309 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 }{CSTYLE "" -1 310 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 }{CSTYLE "" -1 311 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 }{PSTYLE "Normal " -1 0 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "Heading 1" 0 3 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 1 0 0 0 0 0 0 0 }1 0 0 0 8 4 0 0 0 0 0 0 -1 0 }{PSTYLE "Maple Output" 0 11 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 }3 3 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 11 12 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 }1 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 } {PSTYLE "Maple Plot" 0 13 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 }3 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 13 256 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }} {SECT 0 {EXCHG {PARA 0 "" 0 "" {TEXT -1 0 "" }{TEXT 256 0 "" }{TEXT 257 48 "Dr. Sarah's Maple Demo on 1-1 and Onto Functions" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 8 "restart:" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 88 "Before executing the following sections, try and think of an example of such a function." }}}{SECT 1 {PARA 3 "" 0 "" {TEXT -1 47 "A function g:R-->R that is not onto and not 1-1" }}{PARA 0 "" 0 " " {TEXT -1 67 "cos(x) is a function g:R->R so that f is not onto and f is not 1-1." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 21 "g:=unapply(cos(x),x);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"gG%$cosG" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 21 "plot(g(x),x=-10..10);" }}{PARA 13 "" 1 "" {INLPLOT "6%-%'CURVESG6$ 7au7$$!#5\"\"!$!1CXw!H:2R)!#;7$$!1LLLe%G?y*!#:$!1t%Huj='o$*F-7$$!1nmm; p0k&*F1$!1N*[`bjJ!**F-7$$!1+vV[Hk;&*F1$!1>%GnyLy&**F-7$$!1L$3-)*G#p%*F 1$!1Tx(4;A,***F-7$$!1n\"z>,:=U*F1$!1YWq/h&*****F-7$$!1++vV5Su$*F1$!1RX ^9NJ()**F-7$$!1L3_vq)pK*F1$!1rMp1GA_**F-7$$!1m;H2Jdz#*F1$!13fL`Gw%*)*F -7$$!1+D1R\"f@B*F1$!11y10G1:)*F-7$$!1LL$3A)F1$!1N C)oawpf$F-7$$!1++Dc[3:\")F1$!1rK!=Ql9e#F-7$$!1o;aQUC3!)F1$!1Kc%>-:l`\" F-7$$!1LL$3i.9!zF1$!1C[Au9USZ!#<7$$!1++]iPH.xF1$\"17m%[W#=,:F-7$$!1nm; /R=0vF1$\"1U6%4!=o\"RJ$>'F1$\"10k)e$Gkf**F-7$$!1K$ek.M*QhF1$\"1eo=U\"Qh*)*F-7$$! 1*\\P4;aX3'F1$\"1KU6)3wL!)*F-7$$!1mmT&Gu,.'F1$\"1-$>$>4j\"o*F-7$$!1+]P MXT@fF1$\"1)Ri0f:FN*F-7$$!1LLL$yaE\"eF1$\"1c9kd*yK\"*)F-7$$!1****\\([j 5i&F1$\"1+O_2`*o)yF-7$$!1mmm\">s%HaF1$\"1Py/<,*=d'F-7$$!1***\\7)*G;K&F 1$\"1tRKHOWAdF-7$$!1LL$3x&y8_F1$\"1&p2Yp3l![F-7$$!1nmTgD%f5&F1$\"1&*>y gusMQF-7$$!1******\\$*4)*\\F1$\"1'\\ux%4R=GF-7$$!1+++DL\")*)[F1$\"1/y \"3S\\\\w\"F-7$$!1++++t_\"y%F1$\"1_=#[8D$3pFcq7$$!1+++v7CtYF1$!1Nl\\*o qP\"RFcq7$$!1+++]_&\\c%F1$!1z!\\+!>+p9F-7$$!1++++;ggWF1$!1cI&>y`8\\#F- 7$$!1+++]zCcVF1$!1mzk=-g'[$F-7$$!1++++V*=D%F1$!1EkAAJ\"RW%F-7$$!1+++]1 aZTF1$!1#)GD9r(GN&F-7$$!1LL3FW,eRF1$!1@#zhRI$[oF-7$$!1mm;/#)[oPF1$!1n# fv\"e_)4)F-7$$!1++v$>BJa$F1$!1;f1]*QY?*F-7$$!1LLL$=exJ$F1$!1[R#)=%H_%) *F-7$$!1LL3_(H+F$F1$!1%)\\/!)Gj<**F-7$$!1LL$3K,BA$F1$!1>&*zI#[u'**F-7$ $!1LLe*)GduJF1$!1FA58?c%***F-7$$!1LLLeW%o7$F1$!1geRtC\"*)***F-7$$!1LL3 Fg6zIF1$!1V$*>.(*[!)**F-7$$!1LL$ef(QJIF1$!1V]nhcLR**F-7$$!1LLek\"fO)HF 1$!1/Q1!3Wb()*F-7$$!1LLLL2$f$HF1$!1?a?[-E*y*F-7$$!1mmT&o_Qr#F1$!1(3Hxo b!*4*F-7$$!1++]PYx\"\\#F1$!1*eXb>R>'zF-7$$!1nmTNz>&H#F1$!17F1$!1$R-z*e[xSF-7$$!1mmTNa%H )=F1$!1e\"=n)f/rIF-7$$!1K$ek`2^x\"F1$!1!fO#Ru#*G?F-7$$!1****\\P'psm\"F 1$!154DaKPK'*Fcq7$$!1***\\iX#ek:F1$\"1XHXc0$Q@'!#=7$$!1*****\\F&*=Y\"F 1$\"1,K)\\Gfo3\"F-7$$!1***\\P43#f8F1$\"1DS#HxH,5#F-7$$!1****\\74_c7F1$ \"1il#\\cu74$F-7$$!1lmT5VBU5F1$\"1.CEl6#H/&F-7$$!1:LL$3x%z#)F-$\"1ildHr!* F-7$$!1lmT&QdDG$F-$\"1;3l)>hgY*F-7$$!1****\\ivF@AF-$\"1dLC6!4Vv*F-7$$! 1n;/^wj!p\"F-$\"1>Db$HFu&)*F-7$$!1MLeRx**f6F-$\"1)Q'4rczK**F-7$$!17+D \"GyNH'Fcq$\"1:$eB(>?!)**F-7$$!1^omm;zr)*F]bl$\"1(\\.Eu7&****F-7$$\"1J L3x\"yY_%Fcq$\"184'**Ql(*)**F-7$$\"1NL3_Nl.5F-$\"1#>8@Cw'\\**F-7$$\"1O $ekGR[b\"F-$\"1)o]81n$z)*F-7$$\"1QL$3-Dg5#F-$\"1'34pR^!z(*F-7$$\"1TLe* ['R3KF-$\"1&R\"=!e4(*[*F-7$$\"1WLLezw5VF-$\"1Cd]!Qj^3*F-7$$\"1tmmmJ+Ii F-$\"1pSyl]J@\")F-7$$\"1.++v$Q#\\\")F-$\"1&>$oo\"Q#foF-7$$\"1om\"z\\1A -\"F1$\"1/AkT]%[@&F-7$$\"1NLLe\"*[H7F1$\"1)[F/Y\">ZLF-7$$\"1,+v$zglL\" F1$\"1qmpCY*4K#F-7$$\"1om;HCjV9F1$\"1)eo*RX@o7F-7$$\"1MLekSq]:F1$\"1C? yO544?Fcq7$$\"1++++dxd;F1$!1)H4FAupo)Fcq7$$\"1++D1W_iF- 7$$\"1++]7JFn=F1$!1R!)*HCD:#HF-7$$\"1,+v==-s>F1$!1rGWC!oa!RF-7$$\"1,++ D0xw?F1$!1Mf4S!)fY[F-7$$\"1,+vV+ZzAF1$!1G'>_&RF3lF-7$$\"1,+]i&p@[#F1$! 1h])e7eM!zF-7$$\"1,+v=GB2FF1$!1a;:(G'Rr!*F-7$$\"1+++vgHKHF1$!1q6.zIx\" y*F-7$$\"1L$e9T`G)HF1$!144,/OFu)*F-7$$\"1mm\"zu5M.$F1$!1*G'3C/aT**F-7$ $\"1**\\P%3oR3$F1$!1+u!*Q;S$)**F-7$$\"1LL$3UDX8$F1$!1P_9s-v****F-7$$\" 1m;HdF3&=$F1$!1)pp[aW0***F-7$$\"1***\\P4ScB$F1$!1McJ#)z!e&**F-7$$\"1K$ 3-V(>'G$F1$!14Tw`$Hc*)*F-7$$\"1lmmmZvOLF1$!1ADpXC;5)*F-7$$\"1LLLexn_NF 1$!15\"f4]xo;*F-7$$\"1,++]2goPF1$!1kRxMb'y4)F-7$$\"1nm\"H2fU'RF1$!1=f- ICp-oF-7$$\"1KL$eR<*fTF1$!1*[pu;FzC&F-7$$\"1+]P40(oE%F1$!1j#o))*zD4VF- 7$$\"1nm\"HiBQP%F1$!1;,tMBM@LF-7$$\"1N$ektw2[%F1$!1tO#H9qaH#F-7$$\"1-+ +])Hxe%F1$!1d_6h^OV7F-7$$\"1o;z%Rk$)o%F1$!1D5=duA-CFcq7$$\"1MLeR*)**)y %F1$\"1`/?yU]`wFcq7$$\"1+]P%[L'*)[F1$\"1O6B)>zJw\"F-7$$\"1mm;H!o-*\\F1 $\"1@F1on;VFF-7$$\"1ML$3A_1?&F1$\"1!p'R\"zF4p%F-7$$\"1,+]7k.6aF1$\"1h1 &H(f#=V'F-7$$\"1MLe9as;cF1$\"14t;o5:gyF-7$$\"1mmm;WTAeF1$\"1'4g#f**4d* )F-7$$\"1+]7yI3IfF1$\"1:$o$oW/$Q*F-7$$\"1KLeR'F1$\"1zz%Q'*)zk**F-7$$\"1****\\i!*3`iF1$\"13D7A9Z&***F-7$$ \"1mTN@z$\\I'F1$\"1z7<7Uj(***F-7$$\"1L$3-y'ycjF1$\"1\\40Tj#H(**F-7$$\" 1+D1Rcj3kF1$\"14a:;UT@**F-7$$\"1nm\"z\\%[gkF1$\"1CUs'GOK%)*F-7$$\"1,]i :A=klF1$\"1eH:&f%z2'*F-7$$\"1NLLL*zym'F1$\"1E.'RvI\"p#*F-7$$\"1OL$3sr* zoF1$\"1,:cu(e9F)F-7$$\"1OLL3N1#4(F1$\"13FaM]5.pF-7$$\"1-+vo!*R-tF1$\" 1U&3\\\\d.C&F-7$$\"1pm;HYt7vF1$\"18&p9_CmM$F-7$$\"1OLek6,1xF1$\"1!*3; \\3Ju9F-7$$\"1-+++xG**yF1$!1\\P=6o0HXFcq7$$\"1qmTgg/5!)F1$!1]\\MsnJa:F -7$$\"1OL$3U/37)F1$!1u5++*zmj#F-7$$\"1-+D\"yi:B)F1$!1RM?N3t'o$F-7$$\"1 qmmT6KU$)F1$!1?\"p5L,;p%F-7$$\"1.+]P$[/a)F1$!19pYP<3QjF-7$$\"1OLLLbdQ( )F1$!1MT[SudOxF-7$$\"1om\"zW?)\\*)F1$!1:ZE=:7$*))F-7$$\"1++]i`1h\"*F1$ !1NnfM))Ga'*F-7$$\"1,+DJ&f@E*F1$!1D[egt1o)*F-7$$\"1,+++PDj$*F1$!1/8$fz z5)**F-7$$\"1-]P%y+QT*F1$!1`>/9vR****F-7$$\"1-+voyMk%*F1$!1ANQL@<#***F -7$$\"1,]7`\\*[^*F1$!1+#H46A%f**F-7$$\"1-+]P?Wl&*F1$!1H^U06B,**F-7$$\" 1,+v=5s#y*F1$!1,!e%4X>m$*F-7$$\"#5F*F+-%'COLOURG6&%$RGBG$F\\_n!\"\"F*F *-%+AXESLABELSG6$Q\"x6\"%!G-%%VIEWG6$;F(F[_n%(DEFAULTG" 2 258 258 258 2 0 1 0 2 9 0 4 2 1 45 45 10030 0 10056 10074 0 0 0 20530 0 12020 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 95 "We know from calculus that cos \+ x is a function. But, it is not so easy to rigorously prove - t" } {TEXT 309 51 "ry it without assuming what you are trying to prove" } {TEXT -1 61 "! Let's assume that we have proved that cos x is a funct ion." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 0 "" }{TEXT 310 30 "To prove that c os x is not 1-1" }{TEXT -1 60 " we must produce x1 not equal to x2 so \+ that cos(x1)=cos(x2)." }}{PARA 0 "" 0 "" {TEXT -1 73 "Take x1=Pi and x 2=3Pi. Notice that x1 and x2 are real and unequal. Also," }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 8 "cos(Pi);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#!\"\"" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 10 "cos (3*Pi);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#!\"\"" }}}{EXCHG {PARA 0 " " 0 "" {TEXT -1 47 "and so cos(x1)=cos(x2). Hence cosx is not 1-1." } }{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }} {PARA 0 "" 0 "" {TEXT -1 0 "" }{TEXT 311 31 "To prove that cos x is no t onto" }{TEXT -1 67 " we must produce y so that cos(x) is not equal t o y for all x in R." }}{PARA 0 "" 0 "" {TEXT -1 66 "Take y=2. Assume \+ for contradiction that cos(x)=2 for some x in R." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 25 "evalf(solve(cos(x)=2,x));" }}{PARA 11 "" 1 " " {XPPMATH 20 "6#,$%\"IG$\"+(*y&pJ\"!\"*" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 105 "Then x=1.316957897 I. We have arrived at a contradictio n to the fact that x is in R, since x is complex." }}{PARA 0 "" 0 "" {TEXT -1 73 "Hence, cos(x) is not equal to 2 for all x in R, and so co s x is not onto." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}} {PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}}{SECT 1 {PARA 3 "" 0 "" {TEXT -1 46 "A function \+ o:R-->R that is not onto but is 1-1" }}{PARA 0 "" 0 "" {TEXT -1 61 "e^ (x) is a function o:R-->R so that f is not onto but is 1-1." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 21 "o: =unapply(exp(x),x);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"oG%$expG" } }}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 19 "plot(o(x),x=-5..5);" }} {PARA 256 "" 1 "" {INLPLOT "6%-%'CURVESG6$7Y7$$!\"&\"\"!$\"1na3**p%zt' !#=7$$!1LLLe%G?y%!#:$\"1Ge,&H&)*y$)F-7$$!1mmT&esBf%F1$\"1O4JS)zG,\"!#< 7$$!1LL$3s%3zVF1$\"1$z%*o!Go`7F97$$!1ML$e/$QkTF1$\"1%[ey*)HRb\"F97$$!1 nmT5=q]RF1$\"1'o$eO$>T#>F97$$!1LL3_>f_PF1$\"1`wg\"z'oXBF97$$!1++vo1YZN F1$\"1(\\&*=Pn(zGF97$$!1LL3-OJNLF1$\"1nOS:>MgNF97$$!1++v$*o%Q7$F1$\"1` lyzEw)R%F97$$!1mmm\"RFj!HF1$\"1cxXslhnaF97$$!1LL$e4OZr#F1$\"18kc2FCAmF 97$$!1+++v'\\!*\\#F1$\"1Ak\"GJ/j@)F97$$!1+++DwZ#G#F1$\"1W)4\\)4J?5!#;7 $$!1+++D.xt?F1$\"1<2fg\"4rD\"F[p7$$!1LL3-TC%)=F1$\"1UC'3qQ%>:F[p7$$!1m mm\"4z)e;F1$\"1A8izA_.>F[p7$$!1mmmm`'zY\"F1$\"1#R5[vPRI#F[p7$$!1++v=t) eC\"F1$\"1#*[$3Ebo(GF[p7$$!1nmm;1J\\5F1$\"1v0ON2z,NF[p7$$!1$***\\(=[jL )F[p$\"1h=MK?nWVF[p7$$!1'***\\iXg#G'F[p$\"1g!y-u!>N`F[p7$$!1emmT&Q(RTF [p$\"1<#F[p$\"12m>*\\bx/)F[p7$$!1EMLLe*e$\\F-$ \"1=&Holi2&**F[p7$$\"1sm;zRQb@F[p$\"1=9w:'H0C\"F17$$\"1-+](=>Y2%F[p$\" 1\\PR3#)*H]\"F17$$\"1vmm\"zXu9'F[p$\"1o(e!>U=\\=F17$$\"1,+++&y))G)F[p$ \"1\"))yNkp2H#F17$$\"1++]i_QQ5F1$\"1Mj(zD_Y#GF17$$\"1,+D\"y%3T7F1$\"1& 3*Q$3k$fMF17$$\"1++]P![hY\"F1$\"1OZ9vU^KVF17$$\"1LLL$Qx$o;F1$\"1-&fX$QT+)F 17$$\"1,++D\\'QH#F1$\"1\"eeRUxJ\"**F17$$\"1LLe9S8&\\#F1$\"1p8l6eL77!#9 7$$\"1,+D1#=bq#F1$\"1\\X\">\"o?'\\\"F_w7$$\"1LLL3s?6HF1$\"1wj(GC(*y$=F _w7$$\"1++DJXaEJF1$\"1HmWiv]zAF_w7$$\"1ommm*RRL$F1$\"1(G\\r\\j[!GF_w7$ $\"1om;a<.YNF1$\"1U[bUVanMF_w7$$\"1NLe9tOcPF1$\"1D#e(*3p#zUF_w7$$\"1,+ +]Qk\\RF1$\"1`ctMto\">&F_w7$$\"1NL$3dg6<%F1$\"1bpQd-1zkF_w7$$\"1,+voTA qUF1$\"1lZ?Lqw`rF_w7$$\"1ommmxGpVF1$\"1&G+MUN()*yF_w7$$\"1M$eRA5\\Z%F1 $\"1^S=\"*=ny()F_w7$$\"1++D\"oK0e%F1$\"1JJP8_jc(*F_w7$$\"1,++]oi\"o%F1 $\"1Vn05aXz5!#87$$\"1,+v=5s#y%F1$\"1VfNl()G%>\"Fa[l7$$\"1+D1k2/P[F1$\" 1og%G_c4E\"Fa[l7$$\"1,]P40O\"*[F1$\"1qiQ " 0 "" {MPLTEXT 1 0 13 "diff(o(x),x);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6 #-%$expG6#%\"xG" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 93 "We know from c alculus that e^x is a function. But, it is not so easy to rigorously \+ prove - t" }{TEXT 303 51 "ry it without assuming what you are trying t o prove" }{TEXT -1 59 "! Let's assume that we have proved that e^x is a function." }}{PARA 0 "" 0 "" {TEXT -1 281 "Recall that the derivati ve of e^x is e^x itself. We know that (e^x) is always positive for al l x by definition of a positive number(2.71828...) to a power x. Sinc e the derivative is always positive, we know that the function o(x) is increasing. Thus if a " 0 "" {MPLTEXT 1 0 19 "solve(exp(x)=-1,x);" }} {PARA 11 "" 1 "" {XPPMATH 20 "6#*&%\"IG\"\"\"%#PiGF%" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 104 "But then x=Pi*I, which is complex, and so we h ave arrived at a contradiction to the fact that x is in R." }}{PARA 0 "" 0 "" {TEXT -1 70 "Hence o(x) is not equal to -1 for all x in R, and so o(x) is not onto." }}}}{SECT 1 {PARA 3 "" 0 "" {TEXT -1 43 "A func tion f:R-->R that is onto but not 1-1" }}{PARA 0 "" 0 "" {TEXT -1 0 " " }}{EXCHG {PARA 0 "" 0 "" {TEXT -1 88 "We'll prove that 2x^3-x is a f unction from f:R-->R so that f is onto but not one-to-one." }}{PARA 0 "" 0 "" {TEXT -1 29 "Let's first look at the plot." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 20 "f:=unapply(x^3-x,x);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"fGR6#%\"xG6\"6$%)operatorG%&arrowGF(,&*$)9$\"\"$\" \"\"\"\"\"F/!\"\"F(F(F(" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 19 " plot(f(x),x=-2..2);" }}{PARA 13 "" 1 "" {INLPLOT "6%-%'CURVESG6$7S7$$! \"#\"\"!$!\"'F*7$$!1LLL$Q6G\">!#:$!1(Q82bte3&F07$$!1nm;M!\\p$=F0$!1MW) *p#=;O%F07$$!1LLL))Qj^Fen7$$!1,+++()>'***Fen$\"1b]x%el#)f(!#>7$$!1++++0\"*H\"*Fen$\"1+ D3T$\\'>:Fen7$$!1++++83&H)Fen$\"1)>rUvqte#Fen7$$!1LLL3k(p`(Fen$\"1[^Q \"e?bD$Fen7$$!1nmmmj^NmFen$\"15K1rL*Qr$Fen7$$!1ommm9'=(eFen$\"1D=G:mJZ QFen7$$!1,++v#\\N)\\Fen$\"1WqJpn%eu$Fen7$$!1pmmmCC(>%Fen$\"1+OT&z?yX$F en7$$!1*****\\FRXL$Fen$\"10qiynwjHFen7$$!1+++D=/8DFen$\"19)RRqLVN#Fen7 $$!1mmm;a*el\"Fen$\"1%\\Ug$4\\5;Fen7$$!1pmm;Wn(o)!#<$\"1eMO(f.@i)F[s7$ $!1qLLL$eV(>!#=$\"1f_5P1Nu>Fas7$$\"1Mmm;f`@')F[s$!1&)e:!G^ub)F[s7$$\"1 )****\\nZ)H;Fen$!1'=M_M_le\"Fen7$$\"1lmm;$y*eCFen$!1rz?kVH5BFen7$$\"1* ******R^bJ$Fen$!1+9Dxn2^HFen7$$\"1'*****\\5a`TFen$!1ktVmh(pV$Fen7$$\"1 (****\\7RV'\\Fen$!1rx/![%*3u$Fen7$$\"1'*****\\@fkeFen$!1e['R5dv%QFen7$ $\"1JLLL&4Nn'Fen$!1X\"z*zLT,PFen7$$\"1*******\\,s`(Fen$!1R()yk?ObKFen7 $$\"1lmm\"zM)>$)Fen$!1$=u$)=u3c#Fen7$$\"1*******pfa<*Fen$!1)p#3jjs]9Fe n7$$\"1HLLeg`!)**Fen$!1VbRc.V\")QFas7$$\"1++]#G2A3\"F0$\"1WCpnBW_=Fen7 $$\"1LLL$)G[k6F0$\"1,N@^kzXTFen7$$\"1++]7yh]7F0$\"1Ijv^h/aqFen7$$\"1nm m')fdL8F0$\"1j;Nq()3Q5F07$$\"1nmm,FT=9F0$\"1lURUTGN9F07$$\"1LL$e#pa-:F 0$\"1ZN!3.u'*)=F07$$\"1+++Sv&)z:F0$\"10FwWwQjBF07$$\"1LLLGUYo;F0$\"16* *zV7;wHF07$$\"1nmm1^rZU@!\\`= VF07$$\"1++]2%)38>F0$\"1l^RMxj)3&F07$$\"\"#F*$\"\"'F*-%'COLOURG6&%$RGB G$\"#5!\"\"F*F*-%+AXESLABELSG6$Q\"x6\"%!G-%%VIEWG6$;F(Fhz%(DEFAULTG" 2 247 247 247 2 0 1 0 2 9 0 4 2 1 45 45 10030 0 10056 10074 0 0 0 20530 0 12020 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 112 "It looks like f is a function since it passes \+ the vertical lines tests: Each verticle line hits the graph of f," }} {PARA 0 "" 0 "" {TEXT -1 193 "and a verticle lines doesn't hit the gra ph more than once. But this is not a proof since we don't have the en tire graph of f to refer to at once (we can't graph from -infinity to \+ infinity!). " }}}{EXCHG {PARA 0 "" 0 "" {TEXT 282 47 "We can prove th at f(x) is a function from R-->R" }{TEXT -1 85 ", because f is a polyn omial in x, defined on all of R (ie we use the e.c. from PS 4)." }}} {EXCHG {PARA 0 "" 0 "" {TEXT -1 159 "It looks like f is not 1-1 since \+ it fails the one-to-one horizontal line test - we can draw a horizonta l line that hits the graph of f more than once (ie y=0)." }}}{EXCHG {PARA 0 "" 0 "" {TEXT 281 26 "To prove that f is not 1-1" }{TEXT -1 63 ", we must produce two x values that correspond to the same y. " } }}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 17 "fsolve(f(x) = 0);" }} {PARA 11 "" 1 "" {XPPMATH 20 "6%$!+++++5!\"*\"\"!$\"\"\"F&" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 90 "So, take x1=0 and x2=1. Notice that x1 i s not equal to x2, but we'll see that f(x1)=f(x2)" }}}{EXCHG {PARA 0 " > " 0 "" {MPLTEXT 1 0 5 "f(0);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#\"\" !" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 5 "f(1);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#\"\"!" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 98 "Hence, we have produced x1 not equal to x2 so that f(x1)=f(x2). Thus, f: R- ->R is not one-to-one." }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 95 "It look s like f is onto since it looks like each horizontal line hits the gra ph at least once. " }}}{EXCHG {PARA 0 "" 0 "" {TEXT 283 23 "To prove t hat f is onto" }{TEXT -1 83 ", we let y=a be an element of R be arbitr ary. We must produce an x so that f(x)=a." }}}{EXCHG {PARA 0 "> " 0 " " {MPLTEXT 1 0 18 "solve(f(x) = a,x);" }}{PARA 12 "" 1 "" {XPPMATH 20 "6%,&*$),&%\"aG\"$3\"*$-%%sqrtG6#,&!#7\"\"\"*$)F'\"\"#\"\"\"\"#\")F3\" #7#F/\"\"$F3#F/\"\"'*&F3F3*$)F&#\"\"\"F7F3!\"\"F2,(F$#!\"\"F5F:FB*(%\" IGF/-F+6#F7F3,&F$F8F:!\"#F/#F/F2,(F$FAF:FBFC#FBF2" }}}{EXCHG {PARA 0 " > " 0 "" {MPLTEXT 1 0 19 "d:=unapply(%[1],a);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"dGR6#%\"aG6\"6$%)operatorG%&arrowGF(,&*$),&9$\"$3\" *$-%%sqrtG6#,&!#7\"\"\"*$)F0\"\"#\"\"\"\"#\")F<\"#7#F8\"\"$F<#F8\"\"'* &Fsqrt(12)/9, we can find an x so that f(x)=a by plugging into d:" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 13 "evalf(d(20));" }}{PARA 11 " " 1 "" {XPPMATH 20 "6#$\"+q'Qr$G!\"*" }}}{EXCHG {PARA 11 "" 1 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 11 "What about " } {TEXT 285 22 "if |a| " 0 "" {MPLTEXT 1 0 45 "plot(f(x),x=-1..1,y=-sqrt(12 )/9..sqrt(12)/9);" }}{PARA 13 "" 1 "" {INLPLOT "6%-%'CURVESG6$7hn7$$! \"\"\"\"!F*7$$!1MLLe%G?y*!#;$\"100#>nJz@%!#<7$$!1nmm;p0k&*F.$\"1dE3\" \\2q:)F17$$!1++vV5Su$*F.$\"17*y#GTBO6F.7$$!1LL$3s%HaF.$\"18]cZ*3*GQF.7$$!1+++]$*4)*\\F.$\"1(4)p&HC&\\PF.7$ $!1+++]_&\\c%F.$\"17`80En8OF.7$$!1+++]1aZTF.$\"1+RyJo2MMF.7$$!1nm;/#)[ oPF.$\"1W\")zDiILKF.7$$!1MLL$=exJ$F.$\"1-H))3`b_HF.7$$!1MLLL2$f$HF.$\" 1G-\"piiGo#F.7$$!1++]PYx\"\\#F.$\"1J'*GC=1PBF.7$$!1MLLL7i)4#F.$\"1,nUC N>1?F.7$$!1++]P'psm\"F.$\"1vLXvI#4i\"F.7$$!1++]74_c7F.$\"1xuO(R#oO7F.7 $$!1JLL$3x%z#)F1$\"1:Jb#[@FA)F17$$!1MLL3s$QM%F1$\"1L/#f&3kNVF17$$!1^om m;zr)*!#>$\"17^4)F17$$\"1KLLe\"*[H7F.$!1'*fFkO!4@\"F.7$$\"1*******p vxl\"F.$!1Ck:sj@7;F.7$$\"1)****\\_qn2#F.$!1pYb9**>()>F.7$$\"1)***\\i&p @[#F.$!1q4)=)*Q#HBF.7$$\"1)****\\2'HKHF.$!11cC%pm,o#F.7$$\"1lmmmZvOLF. $!1#R(\\ZFClHF.7$$\"1+++]2goPF.$!1#f)f?3PLKF.7$$\"1KL$eR<*fTF.$!1s7BqHF.7$$ \"1mmmT6KU$)F.$!16,],$Rl`#F.7$$\"1LLLLbdQ()F.$!1L#H!4Jcl?F.7$$\"1++]i` 1h\"*F.$!1is>%RIEZ\"F.7$$\"1++++PDj$*F.$!1gGG10Wa6F.7$$\"1++]P?Wl&*F.$ !1Z/J,O%G8)F17$$\"1++v=5s#y*F.$!1]UPN\\(\\?%F17$$\"\"\"F*F*-%'COLOURG6 &%$RGBG$\"#5F)F*F*-%+AXESLABELSG6$Q\"x6\"Q\"yFg^l-%%VIEWG6$;F(F[^l;$!+ &z,!\\Q!#5$\"+&z,!\\QF`_l" 2 247 247 247 2 0 1 0 2 9 0 4 2 1 45 45 10030 0 10056 10074 0 0 0 20530 0 12020 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 277 "Since we have the en tire graph for these y values, we can use a graphing argument to show \+ that f is onto these remaining y values. For any y in this region, dr aw a horizontal line at y. Notice that this hits the graph of f, so c hoose x as (one of) the corresponding x values." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}}{EXCHG {PARA 11 "" 1 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "> " 0 " " {MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}}{MARK "0 0 2" 48 } {VIEWOPTS 1 1 0 1 1 1803 }