{VERSION 3 0 "APPLE_68K_MAC" "3.0" } {USTYLETAB {CSTYLE "Maple Input" -1 0 "Courier" 0 1 255 0 0 1 0 1 0 0 1 0 0 0 0 }{CSTYLE "2D Math" -1 2 "Times" 0 1 0 0 0 0 0 0 2 0 0 0 0 0 0 }{CSTYLE "2D Output" 2 20 "" 0 1 0 0 255 1 0 0 0 0 0 0 0 0 0 } {CSTYLE "" -1 256 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 257 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 }{CSTYLE "" -1 258 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 }{CSTYLE "" -1 259 "" 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 }{CSTYLE "" -1 260 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 }{CSTYLE "" -1 261 "" 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 }{CSTYLE "" -1 262 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 }{CSTYLE "" -1 263 "" 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 }{CSTYLE "" -1 264 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 }{CSTYLE "" -1 265 "" 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 }{CSTYLE "" -1 266 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 }{CSTYLE "" -1 267 "" 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 }{CSTYLE "" -1 268 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 }{CSTYLE "" -1 269 "" 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 }{CSTYLE "" -1 270 "" 0 1 0 0 0 0 0 2 0 0 0 0 0 0 0 }{CSTYLE "" -1 271 "" 0 1 0 0 0 0 2 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 272 "" 0 1 0 0 0 0 0 2 0 0 0 0 0 0 0 }{CSTYLE "" -1 273 "" 1 14 0 0 0 0 2 2 0 0 0 0 0 0 0 }{CSTYLE "" -1 274 "" 1 14 0 0 0 0 2 0 0 0 0 0 0 0 0 }{PSTYLE "Normal" -1 0 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "Text Output" -1 2 1 {CSTYLE "" -1 -1 "Courier" 1 10 0 0 255 1 0 0 0 0 0 1 3 0 3 }1 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "Heading 1" 0 3 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 1 0 0 0 0 0 0 0 }1 0 0 0 8 4 0 0 0 0 0 0 -1 0 }{PSTYLE "Heading 2" 3 4 1 {CSTYLE "" -1 -1 "" 1 14 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 8 2 0 0 0 0 0 0 -1 0 }{PSTYLE "Heading 3" 4 5 1 {CSTYLE "" -1 -1 "" 1 12 0 0 0 0 1 0 0 0 0 0 0 0 0 }0 0 0 -1 0 0 0 0 0 0 0 0 -1 0 }{PSTYLE "Warning" 2 7 1 {CSTYLE "" -1 -1 "" 0 1 0 0 255 1 0 0 0 0 0 0 1 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 } {PSTYLE "Maple Output" 0 11 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 }3 3 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "Maple Plot" 0 13 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 }3 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }} {SECT 0 {EXCHG {PARA 0 "" 0 "" {TEXT -1 0 "" }{TEXT 256 63 "Problem Se t D 3-7 Solutions Taken Mainly from Your Problem Sets" }}{PARA 0 "" 0 "" {TEXT -1 56 "(with some additional comments and revisions made by m e)" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 8 "restart:" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 26 "with(DEtools):with(plots):" }}} {SECT 1 {PARA 3 "" 0 "" {TEXT -1 79 "Number 3 (Similar to Calman and J ohn C's, Melinda's and Rebekah's Problem Sets)" }}{PARA 0 "" 0 "" {TEXT -1 446 "In problem #3 we are asked to solve the given d.e. and g raph that solution with different values of amplitude (a). The intia l conditions theta(0)=a, and theta'(0)=0. We used the following value s of a: a=0.1, 0.7, 1.5, 3.0 We looked at how the period varies with a mplitude. We were then asked to determine the period of oscillation f or each value. To do this we attempted to find an exact value but in \+ the end had to settle for an estimation." }}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 36 "restart: with(plots): with(DEtools):" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 53 "eq1:=\{diff(x(t),t$2)+sin(x(t))=0,x (0)=0.1,D(x)(0)=0\};" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%$eq1G<%/,&-% %diffG6$-%\"xG6#%\"tG-%\"$G6$F.\"\"#\"\"\"-%$sinG6#F+F3\"\"!/-F,6#F7$F 3!\"\"/--%\"DG6#F,F:F7" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 31 "s ol1:=dsolve(eq1,x(t),numeric);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%%s ol1GR6#%(rkf45_xG6'%\"iG%(rkf45_sG%)outpointG%#r1G%#r2G6#%aoCopyright~ (c)~1993~by~the~University~of~Waterloo.~All~rights~reserved.G6\"C&>8&- %&evalfG6#9$@$52-%$absG6#,$F3!\"\"-F<6#,&&%,loc_controlG6#\"\"#\"\"\"F 3F?4-%'memberG6$&FD6#\"\"'<*$FG\"\"!$FFFQF?FG!\"#$FSFQ$F?FQFFC%>FD-%%c opyG6#=F06#;FG\"#LE\\[lB\"#=FQ\"#8FQ\"#9FQFNFG\"#>FQFhnFQ\"#FFQ\"#CFQ \"#6FQ\"#5FQ\"#GFQ\"#BFQ\"#%'loc_y0G-FY6#=F06#;FGFFE\\[l#FFFQFG Ffp>%'loc_y1G-FY6#=F0FcqE\\[l!@$0F;FQC$>&FD6#F^pF3@%1%'DigitsG-%'evalh fG6#FdrC$>8%-%*traperrorG6#-Ffr6#-%=dsolve/numeric_solnall_rkf45G6,%&l oc_FG-%$varG6#FD-Fes6#F_q-Fes6#Fgq-Fes6#%'loc_F1G-Fes6#%'loc_F2G-Fes6# %'loc_F3G-Fes6#%'loc_F4G-Fes6#%'loc_F5G-Fes6#%)loc_workG@$/Fjr%*laster rorGC%>8'-%+searchtextG6$.Ffr-%(convertG6$-%#opG6$FG7#Fjr%%nameG>8(-Fd u6$.%)hardwareGFgu@%50FbuFQ0F`vFQ-Fas6,FcsFDF_qFgqF]tF`tFctFftFitF\\u- %&ERRORG6#FjrFiv7$/%\"tGF7-%$seqG6$/&%$ordG6#,&8$FGFGFG&F_q6#Fiw/FiwFd qF06%FDF_qFgqF0" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 44 "a:=odepl ot(sol1,[t,x(t)],0..17,color=green):" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 53 "eq2:=\{diff(x(t),t$2)+sin(x(t))=0,x(0)=0.7,D(x)(0)=0 \}:" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 31 "sol2:=dsolve(eq2,x(t ),numeric):" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 43 "e:=odeplot(s ol2,[t,x(t)],0..17,color=blue):" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 53 "eq3:=\{diff(x(t),t$2)+sin(x(t))=0,x(0)=1.5,D(x)(0)=0\}:" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 31 "sol3:=dsolve(eq3,x(t),numeri c):" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 46 "c:=odeplot(sol3,[t,x (t)],0..17,color=magenta):" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 53 "eq4:=\{diff(x(t),t$2)+sin(x(t))=0,x(0)=3.0,D(x)(0)=0\}:" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 31 "sol4:=dsolve(eq4,x(t),numeri c):" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 42 "d:=odeplot(sol4,[t,x (t)],0..17,color=red):" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 19 "d isplay(\{a,e,c,d\});" }}{PARA 13 "" 1 "" {INLPLOT "6&-%'CURVESG6$7T7$ \"\"!$\"\"(!\"\"7$$\"+bxQpM!#5$\"1/y![At_h'!#;7$$\"+5bxQpF/$\"1pca&H@t \\&F27$$\"+Fj\"3/\"!\"*$\"1zPzZ.&pv$F27$$\"+.^v(Q\"F;$\"1>'\\/$)[/e\"F 27$$\"+zQpM$oF27$$\"+NlK;QF;$!14al.%o]&fF27$$\"+6`EjTF;$! 1)[boZ]%4WF27$$\"+(3/-^%F;$!13R,O1spVF27$$\"+\">fz*eF;$ \"1^ZK3!)GGfF27$$\"+nz*[C'F;$\"1R6KbxQpF;$\"1!>JbZ0YL'F27$$\"+&H9dG(F;$\"1uH'*)oeC+&F27$$\"+rIlKw F;$\"1%R0!RqJ*4$F27$$\"+Z=fzzF;$\"1i*f)f'F27$$\"+FdG9(*F;$!1Z.N@$>)**pF27$$\"+]C715!\")$!1rsD [EgJmF27$$\"+Gj\"3/\"Fjt$!132$QC-'GbF27$$\"+1-^v5Fjt$!1.fpB$y**z$F27$$ \"+%3/-6\"Fjt$!1chz^(\\/j\"F27$$\"+iz*[9\"Fjt$\"1\"44(R./`(HVF27$$\"+)\\C7c\"Fjt$!1,(\\(QQ>, fF27$$\"+w$=ff\"Fjt$!1g%)GoaG4oF27$$\"+aAhI;Fjt$!1n;VnIvlpF27$$\"+KhIl ;Fjt$!1a(fgt\\fN'F27$$\"+5+++<_zZ6p(F H7$F9$\"1\\LCJrbh]FH7$F?$\"12S!eM/\"H=FH7$FD$!1N*\\$4(z7i\"FH7$FJ$!1(* [Fo?\\y[FH7$FO$!1)>:\\[IYb(FH7$FT$!1(>/6?(RJ$*FH7$FY$!1%>[mywx***FH7$F hn$!1!o7,v1ZZ*FH7$F]o$!1=tg5FCCyFH7$Fbo$!1ur8h&oBC&FH7$Fgo$!1BvQ^U6O?F H7$F\\p$\"1_2%G'Gt79FH7$Fbp$\"1[m;RXD$p%FH7$Fgp$\"1i4e=2v9uFH7$F\\q$\" 1&p]?j*\\`#*FH7$Faq$\"1LI>fl5\"***FH7$Ffq$\"1&pt#>]0S&*FH7$F[r$\"1+tSi ^&Q&zFH7$F`r$\"1@UM)QX3U&FH7$Fer$\"1#)>iyq@UAFH7$Fjr$!1dd/mlb.7FH7$F_s $!1N=r%pEf]%FH7$Fds$!1?Yjd.drsFH7$Fis$!1Gil!4&[r\"*FH7$F^t$!12*[kD#**z **FH7$Fct$!1q%Hf\")>3pf&FH7$Fcu$ !19%\\A(4KZCFH7$Fhu$\"1F:Bv4WQ**F`p7$F]v$\"1EXKE?f;VFH7$Fbv$\"1D]:UJ:D rFH7$Fgv$\"19[K]+R&3*FH7$F\\w$\"1$[\"HE)QW'**FH7$Faw$\"1+?$>@#*zl*FH7$ Ffw$\"1-)z'*y.C?)FH7$F[x$\"108d)Qy/x&FH7$F`x$\"19'y[KM8l#FH7$Fex$!1KpH u1*o$yF`p7$Fjx$!1dd6.\\LDTFH7$F_y$!1e=7gTcvpFH7$Fdy$!1hC'fp__**)FH7$Fi y$!1dpokJXW**FH7$F^z$!13j]D)G0r*FH7$Fcz$!1$[I7eH7K)FH7$Fhz$!11PYX!z9%f FH7$F][l$!1+larl;aGFH-Fb[l6&Fd[lF(Fe[lF(-F$6$7T7$F($\"#:F+7$F-$\"1_^w& G<+W\"!#:7$F4$\"1y22Ez+h7F[fl7$F9$\"1KGh;@a#o*F27$F?$\"1%=w)=ffydF27$F D$\"1&=THK(QK7F27$FJ$!1n*>;X;xX$F27$FO$!1?:unt\\]xF27$FT$!1#)>&[;c<7\" F[fl7$FY$!1$yI9P$Gh8F[fl7$Fhn$!1:VE)zbO[\"F[fl7$F]o$!1c&)y,kF'[\"F[fl7 $Fbo$!1=M5.)3\"p8F[fl7$Fgo$!1K[c`#oX8\"F[fl7$F\\p$!1G:P(f(e@zF27$Fbp$! 1(3+ozzrl$F27$Fgp$\"1!HrC]`l-\"F27$F\\q$\"1MEuN+M!f&F27$Faq$\"1Q\\)pq+ 2`*F27$Ffq$\"12([D[J0D\"F[fl7$F[r$\"1gjK;(pYV\"F[fl7$F`r$\"1f*R&)e&))* \\\"F[fl7$Fer$\"1q]-6u8X9F[fl7$Fjr$\"1\"edM)eEr7F[fl7$F_s$\"1HO18P\\K) *F27$Fds$\"1]Rmh#*flfF27$Fis$\"1(zyS,SzV\"F27$F^t$!1G>#)zWZdKF27$Fct$! 1HAw/2!yd(F27$Fht$!1oV'GJP(36F[fl7$F^u$!1f\\grMB`8F[fl7$Fcu$!1e8d\"f13 [\"F[fl7$Fhu$!1`mmo$o')[\"F[fl7$F]v$!1TjH)H+X\"F[fl7$Fdy$\"1UmLnXI \"G\"F[fl7$Fiy$\"1U-E(\\N0)**F27$F^z$\"1ce;SQJ^hF27$Fcz$\"1Jr8uX;V;F27 $Fhz$!1=>sZs\\cIF27$F][l$!1+lgVe_.uF2-Fb[l6&Fd[lFe[lF(Fe[l-F$6$7T7$F($ \"#IF+7$F-$\"1DLr'GA9*HF[fl7$F4$\"1zv\"y;eY'HF[fl7$F9$\"1W-))e0];HF[fl 7$F?$\"15'>.jA7%GF[fl7$FD$\"1&\\v;;:+t#F[fl7$FJ$\"1\\&GB#\\GqDF[fl7$FO $\"1bT'pA@^M#F[fl7$FT$\"1O%\\!zY#Q.#F[fl7$FY$\"1lVf\\Sb:;F[fl7$Fhn$\"1 9\\gfQEz5F[fl7$F]o$\"1L%p'3\"3QS%F27$Fbo$!1ob#G)R+vCF27$Fgo$!19tl!RVF2 *F27$F\\p$!1Pj*)pquv9F[fl7$Fbp$!1a)*3#)y4F>F[fl7$Fgp$!1]%=hrBnE#F[fl7$ F\\q$!1)*)*z2r/9DF[fl7$Faq$!1**)>?>)Q!p#F[fl7$Ffq$!1qfq4y'Q\"GF[fl7$F[ r$!1I4vE)o#)*GF[fl7$F`r$!10a6`&)R`HF[fl7$Fer$!1a$y#G/z&)HF[fl7$Fjr$!1? 9Ry(>$**HF[fl7$F_s$!1`_M\"*=h&*HF[fl7$Fds$!1L&z0)4AuHF[fl7$Fis$!15iZz1 eKHF[fl7$F^t$!1-qfm`slGF[fl7$Fct$!1EyxkhylFF[fl7$Fht$!1C'*3h=J@EF[fl7$ F^u$!1*yE73KmT#F[fl7$Fcu$!1I2jc%Q>8#F[fl7$Fhu$!16'o#zYvX+;O8\"=F[fl7$F[x$\"1qr^vH#4=#F[fl 7$F`x$\"1a+.dK9_CF[fl7$Fex$\"1.&y8g_lk#F[fl7$Fjx$\"1eAdrfS$y#F[fl7$F_y $\"1ty?R:rxGF[fl7$Fdy$\"1!GOsBL.%HF[fl7$Fiy$\"1\"R.Q3h'yHF[fl7$F^z$\"1 &o!4\\9F(*HF[fl7$Fcz$\"1=3h!G)R)*HF[fl7$Fhz$\"1)=Y<1x@)HF[fl7$F][l$\"1 %oLp')fm%HF[fl-Fb[l6&Fd[lFe[lF(F(" 2 185 163 163 2 0 1 0 2 9 0 4 2 1 45 45 10030 0 10056 10074 0 0 0 20530 0 12020 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 460 "The graph abov e displays the period of oscillation varying with amplitude in a manne r that would be expected. We would expect that as the amplitude incre ased, as long as other variables remained the same, the period would \+ increase. Here we see that when a=0.1, the period is about t=6.31 s. \+ For a=0.7 we see that the period is about t=6.49 s. When a=1.5, we s ee that the period is about t=7.32 s. When the a=3.0 we see that the \+ period is about t=16.15 s." }}{PARA 0 "" 0 "" {TEXT -1 836 "We attempt ed to do determine the periods exactly in a number of ways allthough a ll were unsuccessful. We first attempted to use the maximize command \+ where a function, here the derivitive of our d.e. set to 0, and a rang e of t values are defined. The command is meant to locate the maximum points in the function over the given interval. Next we tryed the ev alf function over the necessary intervals using the derivative of the \+ given d.e. However maple couldn't make heads or tales of the second p artial term. This meant it couldn't solve for t when the derivative e qualled 0. We attempted taking the derivitive of our dsolved d.e. but couldn't make it work. We also attempted unapplying and simplifying \+ the dsolved d.e. and then taking the derivative. This again did not w ork. Thus we were forced to simply estimate the period." }}{PARA 0 " " 0 "" {TEXT -1 153 "Notice that the above won't work because numerica l methods just give us a bunch of points - they do not give us a smoot h function that we can work with. " }}}{SECT 0 {PARA 4 "" 0 "" {TEXT -1 34 "Deeper Exploration of the Accuracy" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{EXCHG {PARA 0 "" 0 "" {TEXT -1 31 "Let's look at the linear pl ots:" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 49 "leq1:=\{diff(x(t),t $2)+x(t)=0,x(0)=0.1,D(x)(0)=0\};" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>% %leq1G<%/,&-%%diffG6$-%\"xG6#%\"tG-%\"$G6$F.\"\"#\"\"\"F+F3\"\"!/-F,6# F4$F3!\"\"/--%\"DG6#F,F7F4" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 33 "lsol1:=dsolve(leq1,x(t),numeric):" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 46 "la:=odeplot(lsol1,[t,x(t)],0..17,color=black):" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 49 "leq2:=\{diff(x(t),t$2)+x(t)= 0,x(0)=0.7,D(x)(0)=0\}:" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 33 " lsol2:=dsolve(leq2,x(t),numeric):" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 46 "le:=odeplot(lsol2,[t,x(t)],0..17,color=black):" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 49 "leq3:=\{diff(x(t),t$2)+x(t)= 0,x(0)=1.5,D(x)(0)=0\}:" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 33 " lsol3:=dsolve(leq3,x(t),numeric):" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 46 "lc:=odeplot(lsol3,[t,x(t)],0..17,color=black):" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 49 "leq4:=\{diff(x(t),t$2)+x(t)= 0,x(0)=3.0,D(x)(0)=0\}:" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 33 " lsol4:=dsolve(leq4,x(t),numeric):" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 46 "ld:=odeplot(lsol4,[t,x(t)],0..17,color=black):" }}} {EXCHG {PARA 0 "" 0 "" {TEXT -1 41 "Let's look at a plot of .1 and .7 \+ as y(0)" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 21 "display(\{a,la,e,le\}); " }}{PARA 13 "" 1 "" {INLPLOT "6&-%'CURVESG6$7T7$\"\"!$\"\"(!\"\"7$$\" +bxQpM!#5$\"1(Rcr)f#He'!#;7$$\"+5bxQpF/$\"1#p'pUTS\"Q&F27$$\"+Fj\"3/\" !\"*$\"1Idw:EhQNF27$$\"+.^v(Q\"F;$\"1m2:Ae9u7F27$$\"+zQpMK7UrcS\"F27$$\"+jG9d[F;$\"1$[<)[Au45F27$$\"+R;3/_F;$\"1=P9&*4 $[I$F27$$\"+:/-^bF;$\"1yT:[G51_F27$$\"+\">fz*eF;$\"16kjQY*p['F27$$\"+n z*[C'F;$\"1rfAe,([*pF27$$\"+Vn$=f'F;$\"17GbB*3#pmF27$$\"+>bxQpF;$\"19v CK!=)[bF27$$\"+&H9dG(F;$\"1TV7]x?nPF27$$\"+rIlKwF;$\"1I*y,*=oO:F27$$\" +Z=fzzF;$!1>jA5:hp()!#<7$$\"+B1`E$)F;$!1G?8'*>5'=$F27$$\"+*RpMn)F;$!1! GX5p3nF27$$\"+]C715!\")$!1[TCW**[HcF27$$\"+Gj\"3/ \"Fit$!1_$)H\"Hb%zQF27$$\"+1-^v5Fit$!1)>TP=Hrm\"F27$$\"+%3/-6\"Fit$\"1 7ow>teQuF\\s7$$\"+iz*[9\"Fit$\"1?b9na?mIF27$$\"+S=fz6Fit$\"1#*=Xu3bTg)o-y'F27$$\"+aAhI;Fit$!1vA$*fbh%y&F27$$\"+KhIl;Fit$!13-8vU k*4%F27$$\"+5+++F2-%'COLOURG6&%$RGBGF(F(F(-F$6$7TF'7$F- $\"1/y![At_h'F27$F4$\"1pca&H@t\\&F27$F9$\"1zPzZ.&pv$F27$F?$\"1>'\\/$)[ /e\"F27$FD$!1a[L:Q;GyF\\s7$FI$!1'HE;:4L0$F27$FN$!18D[+Wtm\\F27$FS$!164 R)[GHJ'F27$FX$!1vpzk(y]&pF27$Fgn$!1$oF27$F\\o$!14al.%o]&fF27$F ao$!1)[boZ]%4WF27$Ffo$!13R,O1spVF27$Fjp$\"1^ZK3!)GGfF27$F_q$\"1R6KJbZ0YL'F27$F^r$\"1uH'*)oeC+&F27$Fcr$\"1%R0!Rq J*4$F27$Fhr$\"1i*f)f'F27$Fbt$!1Z.N@$>)**pF27$Fgt$!1rsD[EgJ mF27$F]u$!132$QC-'GbF27$Fbu$!1.fpB$y**z$F27$Fgu$!1chz^(\\/j\"F27$F\\v$ \"1\"44(R./`(HVF27$Fhy$!1,(\\(QQ>,fF27$F]z$!1g%)GoaG4oF27$F bz$!1n;VnIvlpF27$Fgz$!1a(fgt\\fN'F27$F\\[l$!1cuaWK\"z.&F2-Fa[l6&Fc[lF( F($\"*++++\"Fit-F$6$7T7$F($\"\"\"F+7$F-$\"1T%=mSV^S*F\\s7$F4$\"1'><_zZ 6p(F\\s7$F9$\"1\\LCJrbh]F\\s7$F?$\"12S!eM/\"H=F\\s7$FD$!1N*\\$4(z7i\"F \\s7$FI$!1(*[Fo?\\y[F\\s7$FN$!1)>:\\[IYb(F\\s7$FS$!1(>/6?(RJ$*F\\s7$FX $!1%>[mywx***F\\s7$Fgn$!1!o7,v1ZZ*F\\s7$F\\o$!1=tg5FCCyF\\s7$Fao$!1ur8 h&oBC&F\\s7$Ffo$!1BvQ^U6O?F\\s7$F[p$\"1_2%G'Gt79F\\s7$F`p$\"1[m;RXD$p% F\\s7$Fep$\"1i4e=2v9uF\\s7$Fjp$\"1&p]?j*\\`#*F\\s7$F_q$\"1LI>fl5\"***F \\s7$Fdq$\"1&pt#>]0S&*F\\s7$Fiq$\"1+tSi^&Q&zF\\s7$F^r$\"1@UM)QX3U&F\\s 7$Fcr$\"1#)>iyq@UAF\\s7$Fhr$!1dd/mlb.7F\\s7$F^s$!1N=r%pEf]%F\\s7$Fcs$! 1?Yjd.drsF\\s7$Fhs$!1Gil!4&[r\"*F\\s7$F]t$!12*[kD#**z**F\\s7$Fbt$!1q%H f\")>3pf&F\\s7$Fbu$!19%\\A(4 KZCF\\s7$Fgu$\"1F:Bv4WQ**Fa^l7$F\\v$\"1EXKE?f;VF\\s7$Fav$\"1D]:UJ:DrF \\s7$Ffv$\"19[K]+R&3*F\\s7$F[w$\"1$[\"HE)QW'**F\\s7$F`w$\"1+?$>@#*zl*F \\s7$Few$\"1-)z'*y.C?)F\\s7$Fjw$\"108d)Qy/x&F\\s7$F_x$\"19'y[KM8l#F\\s 7$Fdx$!1KpHu1*o$yFa^l7$Fix$!1dd6.\\LDTF\\s7$F^y$!1e=7gTcvpF\\s7$Fcy$!1 hC'fp__**)F\\s7$Fhy$!1dpokJXW**F\\s7$F]z$!13j]D)G0r*F\\s7$Fbz$!1$[I7eH 7K)F\\s7$Fgz$!11PYX!z9%fF\\s7$F\\[l$!1+larl;aGF\\s-Fa[l6&Fc[lF(F]elF(- F$6$7TFbel7$F-$\"1)oW7.!=/%*F\\s7$F4$\"1&zF:I?xo(F\\s7$F9$\"1g;#=*4;b] F\\s7$F?$\"1*e`YR3-#=F\\s7$FD$!1Hx*GfZ;j\"F\\s7$FI$!1K[1t*p!*)[F\\s7$F N$!1`C/U7*Qc(F\\s7$FS$!1OQK%)*otL*F\\s7$FX$!1rgFZ%o\")***F\\s7$Fgn$!1G k**)4YvY*F\\s7$F\\o$!1^f\"Q,L(3yF\\s7$Fao$!1\"*z&=***R>_F\\s7$Ffo$!18T F2B53?F\\s7$F[p$\"1!)3#*f*)[U9F\\s7$F`p$\"1jja?v=@ZF\\s7$Fep$\"1H\"ec^ !HPuF\\s7$Fjp$\"1ntLLi8n#*F\\s7$F_q$\"1&4^2*Gn#***F\\s7$Fdq$\"1Q^95EWF &*F\\s7$Fiq$\"1hz'\\3%)o#zF\\s7$F^r$\"18\\xois\"Q&F\\s7$Fcr$\"1_)4EMg_ >#F\\s7$Fhr$!1[eOo;!GD\"F\\s7$F^s$!1Jlnq[d^XF\\s7$Fcs$!1%R3/BkzI(F\\s7 $Fhs$!1qIa]t]$>*F\\s7$F]t$!1pI3E`^$)**F\\s7$Fbt$!1@JP;w%Qe*F\\s7$Fgt$! 1(plRBI@/)F\\s7$F]u$!1kSgE.3UbF\\s7$Fbu$!1RpXkQh\"Q#F\\s7$Fgu$\"1p6>A` li5F\\s7$F\\v$\"1k@*zH%H!Q%F\\s7$Fav$\"1t*3')*)ff<(F\\s7$Ffv$\"1PGv/%4 l6*F\\s7$F[w$\"18;;G\"*pq**F\\s7$F`w$\"1+-Op.uO'*F\\s7$Few$\"1ww-#)*GW :)F\\s7$Fjw$\"1&HU97./q&F\\s7$F_x$\"1!3E%HV4nDF\\s7$Fdx$!1@V@Ry>@()Fa^ l7$Fix$!1\"[z`m3u?%F\\s7$F^y$!1v\"=o\"fKTqF\\s7$Fcy$!13/Z)fqh.*F\\s7$F hy$!1ca`%**GU&**F\\s7$F]z$!1`)4ib,ho*F\\s7$Fbz$!1wv*HTRPE)F\\s7$Fgz$!1 VQ4GpjceF\\s7$F\\[l$!1unTnSj^FF\\sF`[l" 2 247 247 247 2 0 1 0 2 9 0 4 2 1 45 45 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 105 "Notice that black is the linea r approximation, green is non-linear for .1, and blue is non-linear fo r .7." }}{PARA 0 "" 0 "" {TEXT -1 191 "We see that for .1 the linear a nd nonlinear graphs are on top of each other. For .7, there is a shif t to the right of the non-linear graph. We'll do a shift comparison c omputation later on." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 16 "dis play(\{c,lc\});" }}{PARA 13 "" 1 "" {INLPLOT "6$-%'CURVESG6$7T7$\"\"!$ \"#:!\"\"7$$\"+bxQpM!#5$\"1%fLo*pi59!#:7$$\"+5bxQpF/$\"118$)H!eJ:\"F27 $$\"+Fj\"3/\"!\"*$\"1LM+38u#e(!#;7$$\"+.^v(Q\"F;$\"1j38oCJIFF>7$$\"+zQ pM7$$\"+bEj\"3#F;$!1cDs.ZgLtF>7$$\"+J9dGCF;$!1IrWMOeM6 F27$$\"+2-^vFF;$!1>**Qo_g+9F27$$\"+$)*[C7$F;$!1dvxm^s*\\\"F27$$\"+fxQp MF;$!1B/70=8?9F27$$\"+NlK;QF;$!1PQ^[)48<\"F27$$\"+6`EjTF;$!1\")H.n\"*4 HyF>7$$\"+(3/-^%F;$!1Q![.,`@,$F>7$$\"+jG9d[F;$\"1%\\^FQLP;#F>7$$\"+R;3 /_F;$\"1uHEY1y\"3(F>7$$\"+:/-^bF;$\"1xW*pX$f:6F27$$\"+\">fz*eF;$\"1L0t+*)\\\"F27$$\"+Vn$=f'F;$\"1#RO#zh6H9F2 7$$\"+>bxQpF;$\"1kE+>C.*=\"F27$$\"+&H9dG(F;$\"1ORn5zes!)F>7$$\"+rIlKwF ;$\"1k,-*p*)GH$F>7$$\"+Z=fzzF;$!1*)o'zX-#z=F>7$$\"+B1`E$)F;$!147$$\"+*RpMn)F;$!1xrx[W>'4\"F27$$\"+v\"3/-*F;$!1r(3O%e-z8F27$$\"+^pMn $*F;$!1KLv$*p_(\\\"F27$$\"+FdG9(*F;$!1aX#p#odP9F27$$\"+]C715!\")$!1He= \\#>j?\"F27$$\"+Gj\"3/\"Fit$!1]!*G&H=JJ)F>7$$\"+1-^v5Fit$!1--,!e>Cd$F> 7$$\"+%3/-6\"Fit$\"15m?\"*H)Rf\"F>7$$\"+iz*[9\"Fit$\"1*z$)y;S/d'F>7$$ \"+S=fz6Fit$\"18=nOPRw5F27$$\"+=dG97Fit$\"1_q#\\1wuO\"F27$$\"+'fz*[7Fi t$\"1EMtiWg&\\\"F27$$\"+uMn$G\"Fit$\"1&R)*fj5bW\"F27$$\"+_tO=8Fit$\"1( fAn'R;B7F27$$\"+I71`8Fit$\"1_PL^7$$\"+3^v(Q\"Fit$\"1-\"=j$)R1&Q F>7$$\"+')*[CU\"Fit$!1&Gghxz\"38F>7$$\"+kG9d9Fit$!1c@6^966jF>7$$\"+Un$ =\\\"Fit$!1%[p(z&)>c5F27$$\"+?1`E:Fit$!1l+me^Ub8F27$$\"+)\\C7c\"Fit$!1 1&R>%Q8$\\\"F27$$\"+w$=ff\"Fit$!1hiQ4Z\"HX\"F27$$\"+aAhI;Fit$!1S07$$\"+5+++-%'COLOURG 6&%$RGBGF(F(F(-F$6$7TF'7$F-$\"1_^w&G<+W\"F27$F4$\"1y22Ez+h7F27$F9$\"1K Gh;@a#o*F>7$F@$\"1%=w)=ffydF>7$FE$\"1&=THK(QK7F>7$FJ$!1n*>;X;xX$F>7$FO $!1?:unt\\]xF>7$FT$!1#)>&[;c<7\"F27$FY$!1$yI9P$Gh8F27$Fhn$!1:VE)zbO[\" F27$F]o$!1c&)y,kF'[\"F27$Fbo$!1=M5.)3\"p8F27$Fgo$!1K[c`#oX8\"F27$F\\p$ !1G:P(f(e@zF>7$Fap$!1(3+ozzrl$F>7$Ffp$\"1!HrC]`l-\"F>7$F[q$\"1MEuN+M!f &F>7$F`q$\"1Q\\)pq+2`*F>7$Feq$\"12([D[J0D\"F27$Fjq$\"1gjK;(pYV\"F27$F_ r$\"1f*R&)e&))*\\\"F27$Fdr$\"1q]-6u8X9F27$Fir$\"1\"edM)eEr7F27$F^s$\"1 HO18P\\K)*F>7$Fcs$\"1]Rmh#*flfF>7$Fhs$\"1(zyS,SzV\"F>7$F]t$!1G>#)zWZdK F>7$Fbt$!1HAw/2!yd(F>7$Fgt$!1oV'GJP(36F27$F]u$!1f\\grMB`8F27$Fbu$!1e8d \"f13[\"F27$Fgu$!1`mmo$o')[\"F27$F\\v$!1Tj7$F[w$!1-%z'zP#e&QF>7$F`w$\"1k;g(zI[?)!#<7$Few$\"1m 9*Rll3S&F>7$Fjw$\"1)Q<\"et)pP*F>7$F_x$\"18I(p8P)R7F27$Fdx$\"17;r:Z4H9F 27$Fix$\"15tV:Aa*\\\"F27$F^y$\"1O:>H)H+X\"F27$Fcy$\"1UmLnXI\"G\"F27$Fh y$\"1U-E(\\N0)**F>7$F]z$\"1ce;SQJ^hF>7$Fbz$\"1Jr8uX;V;F>7$Fgz$!1=>sZs \\cIF>7$F\\[l$!1+lgVe_.uF>-Fa[l6&Fc[l$\"*++++\"FitF(F]el" 2 181 121 121 2 0 1 0 2 9 0 4 2 1 45 45 10030 0 10056 10074 0 0 0 20530 0 12020 0 0 0 0 0 0 0 1 1 0 0 0 97 114 0 0 0 0 0 0 }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 140 "The above graph represents 1.5 with magenta as the non-l inear and black as the linear. We can see that the right phase shift \+ has increased." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 16 "display( \{d,ld\});" }}{PARA 13 "" 1 "" {INLPLOT "6$-%'CURVESG6$7T7$\"\"!$\"#I! \"\"7$$\"+bxQpM!#5$\"1iz!>*RD@G!#:7$$\"+5bxQpF/$\"1PEOcgJ1BF27$$\"+Fj \"3/\"!\"*$\"1mU.f#[l^\"F27$$\"+.^v(Q\"F;$\"1/F>?\\iga!#;7$$\"+zQpMs$4sm9F27$$\"+J9dGCF;$!1ZEn\"p AF27$$\"+2-^vFF;$!1!far_57!GF27$$\"+$)*[C7$F;$!1L>r@.X**HF27$$\"+fxQpM F;$!1#*y&zfj-%GF27$$\"+NlK;QF;$!1k!RYo>EM#F27$$\"+6`EjTF;$!1y3QC)>ec\" F27$$\"+(3/-^%F;$!1R)oN(fICgFC7$$\"+jG9d[F;$\"1%R*4`nYFVFC7$$\"+R;3/_F ;$\"1^5^@hN;9F27$$\"+:/-^bF;$\"1w@g**o=JAF27$$\"+\">fz*eF;$\"1R#40^S,y #F27$$\"+nz*[C'F;$\"1>rUQ9!y*HF27$$\"+Vn$=f'F;$\"1Nm_NBBeGF27$$\"+>bxQ pF;$\"1#F27$$\"+v\"3/-*F;$!1)>]%e;0eFF27$$\"+^pMn$*F;$!1Y' *4aR0&*HF27$$\"+FdG9(*F;$!1R]7?O:vGF27$$\"+]C715!\")$!1%)z.n%QET#F27$$ \"+Gj\"3/\"Fit$!1po0OOii;F27$$\"+1-^v5Fit$!1N\"3'Q!R[9(FC7$$\"+%3/-6\" Fit$\"1y^hqf'z=$FC7$$\"+iz*[9\"Fit$\"1q-_=!)398F27$$\"+S=fz6Fit$\"12#Q ]W(y_@F27$$\"+=dG97Fit$\"1uLu\"4_\\t#F27$$\"+'fz*[7Fit$\"1>GL\"))37*HF 27$$\"+uMn$G\"Fit$\"1jMRF7-\"*GF27$$\"+_tO=8Fit$\"1KfV$*yKYCF27$$\"+I7 1`8Fit$\"17Te?.75 .jA7%GF27$FE$\"1&\\v;;:+t#F27$FJ$\"1\\&GB#\\GqDF27$FO$\"1bT'pA@^M#F27$ FT$\"1O%\\!zY#Q.#F27$FY$\"1lVf\\Sb:;F27$Fhn$\"19\\gfQEz5F27$F]o$\"1L%p '3\"3QS%FC7$Fbo$!1ob#G)R+vCFC7$Fgo$!19tl!RVF2*FC7$F\\p$!1Pj*)pquv9F27$ Fap$!1a)*3#)y4F>F27$Ffp$!1]%=hrBnE#F27$F[q$!1)*)*z2r/9DF27$F`q$!1**)>? >)Q!p#F27$Feq$!1qfq4y'Q\"GF27$Fjq$!1I4vE)o#)*GF27$F_r$!10a6`&)R`HF27$F dr$!1a$y#G/z&)HF27$Fir$!1?9Ry(>$**HF27$F^s$!1`_M\"*=h&*HF27$Fcs$!1L&z0 )4AuHF27$Fhs$!15iZz1eKHF27$F]t$!1-qfm`slGF27$Fbt$!1EyxkhylFF27$Fgt$!1C '*3h=J@EF27$F]u$!1*yE73KmT#F27$Fbu$!1I2jc%Q>8#F27$Fgu$!16'o#zYvX+;O8\"=F27$Fjw$\"1qr^vH#4=#F27 $F_x$\"1a+.dK9_CF27$Fdx$\"1.&y8g_lk#F27$Fix$\"1eAdrfS$y#F27$F^y$\"1ty? R:rxGF27$Fcy$\"1!GOsBL.%HF27$Fhy$\"1\"R.Q3h'yHF27$F]z$\"1&o!4\\9F(*HF2 7$Fbz$\"1=3h!G)R)*HF27$Fgz$\"1)=Y<1x@)HF27$F\\[l$\"1%oLp')fm%HF2-Fa[l6 &Fc[l$\"*++++\"FitF(F(" 2 158 112 112 2 0 1 0 2 9 0 4 2 1 45 45 10030 0 10056 10074 0 0 0 20530 0 12020 0 0 0 0 0 0 0 1 1 0 0 0 153 44 0 0 0 0 0 0 }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 138 "The above graph repres ents 3.0 with red as non-linear and black as linear. We can see that \+ the right phase shift has increased even more." }}}{SECT 0 {PARA 5 "" 0 "" {TEXT -1 0 "" }{TEXT 270 0 "" }{TEXT 271 44 "Finding the Phase Sh ift Using Graphical Info" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 73 "For a delta in a given range, found on the graph as the region around the" }}{PARA 0 "" 0 "" {TEXT -1 87 "point where the equation peaks, we can \+ use fsolve to find the phase shift of each graph" }}}{EXCHG {PARA 0 " " 0 "" {TEXT -1 108 "For an amplitude of .1, we look between 5 and 8. \+ We can see that delta is 6.28, which is approximately 2Pi." }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 41 "fsolve(.1*cos(6.28-delta)=.1 ,delta=5..8);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#$\"$G'!\"#" }}} {EXCHG {PARA 0 "" 0 "" {TEXT -1 222 "For am amplitude of .7 and a delt a between 6 and 10, I find detla to equal 6.53. This is larger than 2 Pi, but smaller than 25Pi/12, which is only just over 2Pi. The accura cy is about 96% found by dividing 2Pi by 25Pi/12:" }}}{EXCHG {PARA 0 " > " 0 "" {MPLTEXT 1 0 58 "fsolve(.7*cos(6.53-delta)=.7,delta=6..10);ev alf(25*Pi/12);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#$\"$`'!\"#" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#$\"+&p%)\\a'!\"*" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 204 "For an amplitude of 1.5 and a delta between 6 and 10, de lta is found to be 7.41. Quite larger than 2Pi but smaller than 5Pi/2 . The accuracy has decreased and is about 80% found by dividing 2Pi b y 5Pi/2." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 44 "fsolve(1.5*cos( 7.41-delta)=1.5,delta=6..10);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#$\"$T (!\"#" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 201 "And even Pi shift would be 6Pi. The Pi shift is larger than 5Pi but not quite 6Pi. The accu racy will be off largely. To find the approximate accuracy, divide 2P i by 6Pi, which is about 33% accurate." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 69 "fsolve(3*cos(16.19-delta)=3,delta=16..18);evalf(5*Pi) ;evalf(11*Pi/2);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#$\"%>;!\"#" }} {PARA 11 "" 1 "" {XPPMATH 20 "6#$\"+Fjzq:!\")" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#$\"+gf(ys\"!\")" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 114 "Overall the above numbers indicate that the larger the Amplitude \+ the less accurate the period (2Pi--6.28) becomes." }}}{SECT 0 {PARA 5 "" 0 "" {TEXT -1 0 "" }{TEXT 272 0 "" }{TEXT 273 1 " " }{TEXT 274 48 " Using Elliptic Inegrals to Find the Exact Period" }}{EXCHG {PARA 0 "" 0 "" {TEXT -1 199 "Using a non-elementary integral called an elliptic \+ integral, we could find the exact period using the following formula, \+ where alpha is our initial angle: The proof is beyond the scope of th e class." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 53 "4*Int(1/(sqrt(1 -sin(alpha/2)^2*sin(x)^2)),x=0..Pi/2);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#,$-%$IntG6$*&\"\"\"F(*$-%%sqrtG6#,&\"\"\"F.*&)-%$sinG6#,$%&alpha G#F.\"\"#F7F()-F26#%\"xGF7F(!\"\"F(!\"\"/F;;\"\"!,$%#PiGF6\"\"%" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 56 "evalf(4*Int(1/(sqrt(1-sin(1/ 2)^2*sin(x)^2)),x=0..Pi/2));" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#$\"+kc (**p'!\"*" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 57 "evalf(4*Int(1/ (sqrt(1-sin(.7/2)^2*sin(x)^2)),x=0..Pi/2));" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#$\"+;(*=\"['!\"*" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 58 "evalf(4*Int(1/(sqrt(1-sin(1.5/2)^2*sin(x)^2)),x=0..Pi/2));" }} {PARA 11 "" 1 "" {XPPMATH 20 "6#$\"+S\\'3I(!\"*" }}}{EXCHG {PARA 0 "> \+ " 0 "" {MPLTEXT 1 0 56 "evalf(4*Int(1/(sqrt(1-sin(3/2)^2*sin(x)^2)),x= 0..Pi/2));" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#$\"+PRb:;!\")" }}} {EXCHG {PARA 0 "" 0 "" {TEXT -1 35 "Our graphical estimations are good !" }}}}}}{SECT 1 {PARA 3 "" 0 "" {TEXT -1 70 "Number 4 (Similar to Eri c's and Gabriel, Gabe and Chris' Problem Sets)" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{EXCHG {PARA 0 "" 0 "" {TEXT -1 211 "We are asked to d efine a Maple function of v that will numerically solve the de E\"+sin (E)=0 using the initial conditions E(0)=0, E'(0)=v. I set up two ivps for the linear equation and the non-linear equation. " }}{PARA 0 "" 0 "" {TEXT -1 99 "We are then asked to plot both the linear and nonlin ear equations for v=1, 1.99,2,2.01 from t=0..40" }}}{EXCHG {PARA 0 "> \+ " 0 "" {MPLTEXT 1 0 27 "eq2:=diff(x(t),t$2)+x(t)=0;" }}{PARA 11 "" 1 " " {XPPMATH 20 "6#>%$eq2G/,&-%%diffG6$-%\"xG6#%\"tG-%\"$G6$F-\"\"#\"\" \"F*F2\"\"!" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 36 "linivp:=v->( \{eq2,x(0)=0,D(x)(0)=v\});" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%'liniv pGR6#%\"vG6\"6$%)operatorG%&arrowGF(<%/-%\"xG6#\"\"!F1/--%\"DG6#F/F09$ %$eq2GF(F(F(" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 39 "nonlinivp:= v->(\{eq1,x(0)=0,D(x)(0)=v\});" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%*n onlinivpGR6#%\"vG6\"6$%)operatorG%&arrowGF(<%/-%\"xG6#\"\"!F1/--%\"DG6 #F/F09$%$eq1GF(F(F(" }}}{SECT 0 {PARA 4 "" 0 "" {TEXT -1 3 "v=1" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 83 "e:=odeplot(dsolve(linivp(1.0 0),x(t),numeric,maxfun=8000),[t,x(t)],0..40,color=RED):" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 87 "f:=odeplot(dsolve(nonlinivp(1.00),x (t),numeric,maxfun=8000),[t,x(t)],0..40,color=BLUE):" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 128 "before examining the graph, we must remember t hat the solution plot for the linear equation is in red and the non-li near in blue" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 15 "display(\{e ,f\});" }}{PARA 13 "" 1 "" {INLPLOT "6$-%'CURVESG6$7T7$\"\"!F(7$$\"+1` Ej\")!#5$\"1Z!47'yM'G(!#;7$$\"+hIlK;!\"*$\"1:wW9\\(3)**F/7$$\"+#fz*[CF 3$\"1=HK(H.bQ'F/7$$\"+BhIlKF3$!1]o!))Q\")RB\"F/7$$\"+aEj\"3%F3$!1iJ\\@BJG)*F/7$$\"+;dG9dF3$!1D\")GpI0(Q&F/7$$\"+ ZAhIlF3$\"1ej*oz+\"\\CF/7$$\"+y(QpM(F3$\"1!yi2OV=u)F/7$$\"+4`Ej\")F3$ \"1r;#e#*=b_*F/7$$\"+S=fz*)F3$\"1dz(y**[)F/7$$\"+3/-^:Feo$\"1!Gm\"Hr sk>F/7$$F2Feo$!1(p^!Qgo)z&F/7$$\"+9dG9Feo$\"1)4c_J0( fnF/7$$\"+Ej\"3/#Feo$\"1]8oH$e#****F/7$$\"+z*[C7#Feo$\"1\\q.]vKPpF/7$$ \"+K;3/AFeo$!1H#o?OKZ'\\Fir7$$\"+&G9dG#Feo$!1=x]&3*RvgQ ^s\"F/7$$\"+(*[C7EFeo$\"1xN\\Wqle$)F/7$$\"+]v(Qp#Feo$\"1X%>?l!fC(*F/7$ $\"+.-^vFFeo$\"1CYx%oM@'\\F/7$$\"+cG9dGFeo$!1%z'*))RMu#HF/7$$\"+4bxQHF eo$!18;#3o[@(*)F/7$$\"+i\"3/-$Feo$!1V,\"GoeEO*F/7$$\"+:3/-JFeo$!1L>Cro 'G&QF/7$$\"+oMn$=$Feo$\"1/^.-H)\\3%F/7$$\"+@hIlKFeo$\"1KHMdk\\[%*F/7$$ \"+u(QpM$Feo$\"1\"4yqn8w&))F/7$$\"+F9dGMFeo$\"1UV9wfq%o#F/7$$\"+!3/-^$ Feo$!1**y7'R!4!=&F/7$$\"+Ln$=f$Feo$!1d'z::>/y*F/7$$\"+'QpMn$Feo$!1H$)* **\\vr@)F/7$$\"+R?5bPFeo$!1\")y`Lz]v9F/7$$\"+#pMn$QFeo$\"1=$>:g'F/7 $$\"+XtO=RFeo$\"1$\\=0:VG'**F/7$$\"+)*******RFeo$\"1?)*erN8^uF/-%'COLO URG6&%$RGBG$\"*++++\"FeoF(F(-F$6$7TF'7$F*$\"1)e2<*3W6tF/7$F1$\"1tm7,p( f/\"!#:7$F7$\"1<2$\\&HE:!)F/7$F<$\"1^kF\\@&*f5F/7$FA$!1y)>PQ0C`'F/7$FF $!1MNa=?AO5F[\\l7$FK$!1I24#p\\\"Q')F/7$FP$!1>M$)Qc*z5#F/7$FU$\"1iT*GY> \\o&F/7$FZ$\"1DLB6!on,\"F[\\l7$Fin$\"1)zv)G(o`<*F/7$F^o$\"1![D(e_[KJF/ 7$Fco$!1PZ1\"y2ox%F/7$Fio$!1()3zz')Gx)*F/7$F^p$!1`52]L5B'*F/7$Fcp$!1( \\*=SWGATF/7$Fhp$\"1ErBqF$p\"QF/7$F]q$\"1nWPIX\"G\\*F/7$Fbq$\"1J^.m$o$ y**F/7$Fgq$\"1&)fIQ^(p1&F/7$F[r$!1P\\\\%y?^\"GF/7$F`r$!1#)F/7$F\\w$\"1IU#)eSu*Q\"F/7$Faw$!1X?'*33AuiF/7$Ffw$!1%3:&=J< J5F[\\l7$F[x$!1`^'e!fm:))F/7$F`x$!1%z`kt];V#F/7$Fex$\"1])GD%=(oS&F/7$F jx$\"1Aj+wXq35F[\\l7$F_y$\"1/Z!>A`_K*F/7$Fdy$\"1vv')3KXYMF/7$Fiy$!1QBX W6c\"[%F/7$F^z$!1orJ?>*pw*F/7$Fcz$!1J%[MXOVu*F/7$Fhz$!1q80Q\">KU%F/-F] [l6&F_[lF(F(F`[l" 2 355 190 190 2 0 1 0 2 9 0 4 2 1 45 45 10030 0 10056 10074 0 0 0 20530 0 12020 0 0 0 0 0 0 0 1 1 0 0 0 325 32 0 0 0 0 0 0 }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 29 "for initial velocity v = \+ 1.00" }}{PARA 0 "" 0 "" {TEXT -1 170 "it appears that the non-linear r epresentation has both a larger amplitude and a longer period. the tw o start in phase, but by t = 40 are almost perfectly out of phase. " }}}{SECT 0 {PARA 4 "" 0 "" {TEXT -1 6 "v=1.99" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 83 "g:=odeplot(dsolve(linivp(1.99),x(t),numeric,maxf un=8000),[t,x(t)],0..40,color=RED):" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 87 "h:=odeplot(dsolve(nonlinivp(1.99),x(t),numeric,maxfun =8000),[t,x(t)],0..40,color=BLUE):" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 15 "display(\{g,h\});" }}{PARA 13 "" 1 "" {INLPLOT "6$-%' CURVESG6$7T7$\"\"!F(7$$\"+1`Ej\")!#5$\"1]_PfT7p9!#:7$$\"+hIlK;!\"*$\"1 dNQYLKaBF/7$$\"+#fz*[CF3$\"1[i'=j8iw#F/7$$\"+BhIlKF3$\"18T#yUm#HF/7$$\"+&=fz*[F3$\"16Y)\\At0y#F/7$$\"+;dG9d F3$\"1LPU:tA)Q#F/7$$\"+ZAhIlF3$\"1)eNhD#)o`\"F/7$$\"+y(QpM(F3$\"1^6$R= 8CJ*!#<7$$\"+4`Ej\")F3$!1)*R\"z)o=*R\"F/7$$\"+S=fz*)F3$!1sh)G\"p')=BF/ 7$$\"+r$=fz*F3$!1:U,%f]5v#F/7$$\"+!\\C71\"!\")$!1'p]EsR$=HF/7$$\"+Vr&G 9\"Ffo$!15a::X0IHF/7$$\"+'z*[C7Ffo$!1E/q'))fTz#F/7$$\"+\\C718Ffo$!1wm' y$[j?CF/7$$\"+-^v(Q\"Ffo$!1')=(oacCg\"F/7$$\"+bxQp9Ffo$!1,e9Rr_g=!#;7$ $\"+3/-^:Ffo$\"1M*R'e\\3F8F/7$$F2Ffo$\"1uU^23!=G#F/7$$\"+9dG9^A<0NFF/7$$\"+n$=fz\"Ffo$\"1e#>0EwM\"HF/7$$\"+?5bx=Ffo$\"1mbS>&HI$HF /7$$\"+tO=f>Ffo$\"1o(4$*>,q!GF/7$$\"+Ej\"3/#Ffo$\"10?/))zf^CF/7$$\"+z* [C7#Ffo$\"1RS@(3Yem\"F/7$$\"+K;3/AFfo$\"1>jax)Rey#Fbq7$$\"+&G9dG#Ffo$! 1-GTX1&GD\"F/7$$\"+QpMnBFfo$!1?q0%eqIC#F/7$$\"+\"fz*[CFfo$!1]IZAX==FF/ 7$$\"+WAhIDFfo$!1HW'4a;\"3HF/7$$\"+(*[C7EFfo$!1WWyX2bNHF/7$$\"+]v(Qp#F fo$!1;Yp\"\\B\">GF/7$$\"+.-^vFFfo$!1bAW@!o6[#F/7$$\"+cG9dGFfo$!1kc4Z*e qs\"F/7$$\"+4bxQHFfo$!1lFes_?0PFbq7$$\"+i\"3/-$Ffo$\"1/e4*oGl<\"F/7$$ \"+:3/-JFfo$\"1;!emv@E?#F/7$$\"+oMn$=$Ffo$\"1HZ9d\\T+FF/7$$\"+@hIlKFfo $\"1=@R/!\\A!HF/7$$\"+u(QpM$Ffo$\"1Cv+#[Bw$HF/7$$\"+F9dGMFfo$\"1*esFr^ 0$GF/7$$\"+!3/-^$Ffo$\"1w#>36&R4DF/7$$\"+Ln$=f$Ffo$\"1Q7la66'y\"F/7$$ \"+'QpMn$Ffo$\"1Cs5w/r;YFbq7$$\"+R?5bPFfo$!1_KE(>x\")4\"F/7$$\"+#pMn$Q Ffo$!1!4I([-Sg@F/7$$\"+XtO=RFfo$!1!RZ*)[2')>F/7$F7$\"1+_**[^rq7F/7$F<$!1Xb-eHibCFbq7$FA$!13v&* )e(32;F/7$FF$!1i4$48Me&>F/7$FK$!1&*o&faB?2\"F/7$FP$\"1'Ge&R0rt[Fbq7$FU $\"1U@y-oiRF/7$F^q$\"1<`qBd]*o\"F/7$Fdq$\"1D0G6o !)4RFbq7$Fiq$!1D7p([QR:\"F/7$F]r$!1H^qi7lr>F/7$Fbr$!1z=\"[.Roa\"F/7$Fg r$!1gK`RR;s9Fbq7$F\\s$\"1Up548=X8F/7$Fas$\"1*[d\\K_)*)>F/7$Ffs$\"1**=J <\"G0Q\"F/7$F[t$!1e]b/x\")z)*FY7$F`t$!1z5q^B'e^\"F/7$Fet$!1$z]yZPw(>F/ 7$Fjt$!1N^,<^6$>\"F/7$F_u$\"11$oWtDIV$Fbq7$Fdu$\"1.))fmEPj;F/7$Fiu$\"1 UQ1HM>N>F/7$F^v$\"1*yX.PZY()*Fbq7$Fcv$!1]()=-UfDeFbq7$Fhv$!1?xB$[day\" F/7$F]w$!1>0$y&*oJ'=F/7$Fbw$!1&>ZY[/sm(Fbq7$Fgw$\"1!H93a:\"H\")Fbq7$F \\x$\"1=5:s1D!)=F/7$Fax$\"1pm8&*\\mi)>-F.j%>F/7$Fey$!107R%z<_j\"F/7$Fjy$!1&yN_Vgi$HFbq7 $F_z$\"1ct;;u+L7F/7$Fdz$\"1p,)*Gcg#)>F/7$Fiz$\"12c]]ax#[\"F/-F^[l6&F`[ lFa[lF(F(" 2 250 146 146 2 0 1 0 2 9 0 4 2 1 45 45 10030 0 10056 10074 0 0 0 20530 0 12020 0 0 0 0 0 0 0 1 1 0 0 0 310 139 0 0 0 0 0 0 }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 341 "the trend we saw in the last g raph is greatly accentuated with a larger initial velocity. as the in itial velocity gets bigger, i would trust our linear approximation les s and less, because it is based on the assumption that the displacemen t is small for the pendulum's motion; one would expect larger displace ments with an initial velocity." }}}{SECT 0 {PARA 4 "" 0 "" {TEXT -1 5 "v=2.0" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 80 "i:=odeplot(dsol ve(linivp(2),x(t),numeric,maxfun=8000),[t,x(t)],0..40,color=RED):" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 84 "j:=odeplot(dsolve(nonlinivp( 2),x(t),numeric,maxfun=8000),[t,x(t)],0..40,color=BLUE):" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 15 "display(\{i,j\});" }}{PARA 13 "" 1 "" {INLPLOT "6$-%'CURVESG6$7T7$\"\"!F(7$$\"+1`Ej\")!#5$\"1\\>-m=pw9!#: 7$$\"+hIlK;!\"*$\"1PW**G!y'pBF/7$$\"+#fz*[CF3$\"1I`^_:#pz#F/7$$\"+BhIl KF3$\"1pdSpf#*))HF/7$$\"+aEj\"3%F3$\"1V!46zzS2$F/7$$\"+&=fz*[F3$\"1#[% )GhY<6$F/7$$\"+;dG9dF3$\"1%**4V++%GJF/7$$\"+ZAhIlF3$\"1!QRA?jd8$F/7$$ \"+y(QpM(F3$\"1gLjw6-RJF/7$$\"+4`Ej\")F3$\"1Xzu\\#o/9$F/7$$\"+S=fz*)F3 $\"1&*>v%[B69$F/7$$\"+r$=fz*F3$\"1t!frJ[99$F/7$$\"+!\\C71\"!\")$\"1a7U -:nTJF/7$$\"+Vr&G9\"Feo$\"1XA76-&>9$F/7$$\"+'z*[C7Feo$\"1c98;2[UJF/7$$ \"+\\C718Feo$\"1-^<:mjVJF/7$$\"+-^v(Q\"Feo$\"1$*\\9B>BYJF/7$$\"+bxQp9F eo$\"1B\\Z3V4_JF/7$$\"+3/-^:Feo$\"1(REQ-_`;$F/7$$F2Feo$\"1vSsC#R`>$F/7 $$\"+9dG9Feo$\"1\"4O$f>2&\\%F/7$$\"+Ej\"3/#Feo$\" 1_GdFs%4$eF/7$$\"+z*[C7#Feo$\"1z_wv,=(R(F/7$$\"+K;3/AFeo$\"1,]v?r$>Y)F /7$$\"+&G9dG#Feo$\"1K`\"Q+GC**)F/7$$\"+QpMnBFeo$\"1al&GCcIB*F/7$$\"+\" fz*[CFeo$\"1bcysd(*R$*F/7$$\"+WAhIDFeo$\"1d]/&)*)G(Q*F/7$$\"+(*[C7EFeo $\"12Q*fF6#3%*F/7$$\"+]v(Qp#Feo$\"1L/h0xY<%*F/7$$\"+.-^vFFeo$\"10'eq7w :U*F/7$$\"+cG9dGFeo$\"1Rz9N(HMU*F/7$$\"+4bxQHFeo$\"1OT@&)QLC%*F/7$$\"+ i\"3/-$Feo$\"1e%)>.`#\\U*F/7$$\"+:3/-JFeo$\"1xCqx/iD%*F/7$$\"+oMn$=$Fe o$\"1XX3o*3pU*F/7$$\"+@hIlKFeo$\"1@a)o;)pH%*F/7$$\"+u(QpM$Feo$\"1am\\# G_fV*F/7$$\"+F9dGMFeo$\"1URi$Rv+X*F/7$$\"+!3/-^$Feo$\"10o&ph5?[*F/7$$ \"+Ln$=f$Feo$\"1J=;_c@a&*F/7$$\"+'QpMn$Feo$\"1C&Hfjqrr*F/7$$\"+R?5bPFe o$\"12TmCR935!#97$$\"+#pMn$QFeo$\"1pxG8g*e3\"F\\z7$$\"+XtO=RFeo$\"1M3t y([PA\"F\\z7$$\"+)*******RFeo$\"1^col=`y8F\\z-%'COLOURG6&%$RGBGF(F($\" *++++\"Feo-F$6$7TF'7$F*$\"1@?Cq&psX\"F/7$F1$\"1fx?w\\<'*>F/7$F7$\"1gjB _15x7F/7$F<$!1*\\o=xizY#!#;7$FA$!1Rq%fSj^h\"F/7$FF$!1l>3VCml>F/7$FK$!1 0I!*)f5u2\"F/7$FP$\"1'=cra,#)*[Fa\\l7$FU$\"1$=Dfko$[F/7$Fin$\"1.'>jnjFa\\l7$Fcp$\"1fr!Rih!)\\*Fa\\l7$Fhp$ \"1MON!RxH$>F/7$F]q$\"1X3(>q&*zp\"F/7$Fbq$\"1Rw'33a%HRFa\\l7$Fgq$!1\\ \")Rtrtf6F/7$F[r$!1Pvmd!f:)>F/7$F`r$!15d*\\47Yb\"F/7$Fer$!1D>pZN\"F/7$F_s$\"1S(fCe^)**>F/7$Fds$\"1:#HUWluQ\"F/7$F is$!1_$y5.l%H**!#<7$F^t$!1N?:](zM_\"F/7$Fct$!113=a`d()>F/7$Fht$!1#>n+n 5\"*>\"F/7$F]u$\"1Omk>rF]MFa\\l7$Fbu$\"1r\"QGKJF/7$F\\v$\"1HQ16(oU#**Fa\\l7$Fav$!1%f+Qao[&eFa\\l7$Ffv$!17,$4jHWz \"F/7$F[w$!1I;P:;`s=F/7$F`w$!1')GtZJt0xFa\\l7$Few$\"10nml`'*p\")Fa\\l7 $Fjw$\"14]Un\"*p*)=F/7$F_x$\"1q?f2E_rF/7$Fcy$!14/io\\VV;F/7$Fhy$!1pk76b,^HFa \\l7$F^z$\"1Nx\"HV.#R7F/7$Fcz$\"1,]dq%oD*>F/7$Fhz$\"1`8z#eE-\\\"F/-F][ l6&F_[lF`[lF(F(" 2 210 165 165 2 0 1 0 2 9 0 4 2 1 45 45 10030 0 10056 10074 0 0 0 20530 0 12020 0 0 0 0 0 0 0 1 1 0 0 0 262 292 0 0 0 0 0 0 }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 321 "It appears that the init ial velocity v = 2 is a critical velocity to send the pendulum into a \+ circular or orbital motion rather than the standard oscillation. sinc e this is maximum displacement, i would say our linear approximation i s out the window. by rotating the axis, we could still obtain the per iod if we wish. " }}{PARA 0 "" 0 "" {TEXT -1 403 "Notice that the pen dulum rotates to 180 degrees (ie the \"top\" of the swing) and then st ays there for a bit, debating what to do next. Then, it keeps rotatin g in the same direction until it gets to 180+2Pi degrees, and then it \+ pauses again before rotating in the same direction. Notice that the no n-linear de recognizes the difference between an angle of 0,6.28~2Pi,4 Pi,... while the linear de does not." }}}{SECT 0 {PARA 4 "" 0 "" {TEXT -1 6 "v=2.01" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 83 "k:=od eplot(dsolve(linivp(2.01),x(t),numeric,maxfun=8000),[t,x(t)],0..40,col or=RED):" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 87 "l:=odeplot(dsol ve(nonlinivp(2.01),x(t),numeric,maxfun=8000),[t,x(t)],0..40,color=BLUE ):" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 15 "display(\{k,l\});" }} {PARA 13 "" 1 "" {INLPLOT "6$-%'CURVESG6$7T7$\"\"!F(7$$\"+1`Ej\")!#5$ \"1n$)3=fbk9!#:7$$\"+hIlK;!\"*$\"1@M1^e:1?F/7$$\"+#fz*[CF3$\"1YzZbh[$G \"F/7$$\"+BhIlKF3$!1\"o6de-.[#!#;7$$\"+aEj\"3%F3$!1Fs$HARKi\"F/7$$\"+& =fz*[F3$!1_RBb2\\v>F/7$$\"+;dG9dF3$!1\"z\\=l(z#3\"F/7$$\"+ZAhIlF3$\"1h hvaDpA\\F@7$$\"+y(QpM(F3$\"1m$p!*[5rv\"F/7$$\"+4`Ej\")F3$\"13I!)p#HY\" >F/7$$\"+S=fz*)F3$\"1A#*)RE!eb')F@7$$\"+r$=fz*F3$!1N'[FqO)*G(F@7$$\"+! \\C71\"!\")$!1%[IEUBT'=F/7$$\"+Vr&G9\"Ffo$!1unL'p,X#=F/7$$\"+'z*[C7Ffo $!1z6q_!z3N'F@7$$\"+\\C718Ffo$\"1Ig3J>bX&*F@7$$\"+-^v(Q\"Ffo$\"1NX1xAk U>F/7$$\"+bxQp9Ffo$\"1>!Q-o&[1F/7$$\"+n$=fz\"Ffo$!1n7=b^Qi:F /7$$\"+?5bx=Ffo$!1XZ&ebfp[\"F@7$$\"+tO=f>Ffo$\"1jiw=2qe8F/7$$\"+Ej\"3/ #Ffo$\"1NT'*R3&)4?F/7$$\"+z*[C7#Ffo$\"1c&[6x-WR\"F/7$$\"+K;3/AFfo$!1jG edB6z**!#<7$$\"+&G9dG#Ffo$!1A]g[r4J:F/7$$\"+QpMnBFfo$!1$)Q^IK^(*>F/7$$ \"+\"fz*[CFfo$!1#[@JA1^?\"F/7$$\"+WAhIDFfo$\"1.s#[]GvY$F@7$$\"+(*[C7EF fo$\"1s-3z**3!o\"F/7$$\"+]v(Qp#Ffo$\"1(p)H3Eka>F/7$$\"+.-^vFFfo$\"18Q! =0!*Q(**F@7$$\"+cG9dGFfo$!1o-U&)G9%)eF@7$$\"+4bxQHFfo$!1)yD'y:3@)F@7$$\"+@hIlKFfo$\"1\"o-FmZ\"**=F/7$$\"+u(QpM$Ffo$\"1s 70?-Q!y\"F/7$$\"+F9dGMFfo$\"1>G=8&eiR&F@7$$\"+!3/-^$Ffo$!1a#eV5)>T5F/7 $$\"+Ln$=f$Ffo$!11#zd5ke'>F/7$$\"+'QpMn$Ffo$!1TM&G9_;l\"F/7$$\"+R?5bPF fo$!1*RGqeqd'HF@7$$\"+#pMn$QFfo$\"1T/n\\%*RX7F/7$$\"+XtO=RFfo$\"1&>u@J JD+#F/7$$\"+)*******RFfo$\"1$y!3:xn(\\\"F/-%'COLOURG6&%$RGBG$\"*++++\" FfoF(F(-F$6$7TF'7$F*$\"1twG$=iU[\"F/7$F1$\"1%HC5`z]Q#F/7$F7$\"11&H-[jy #GF/7$F<$\"1[.MKz%f0$F/7$FB$\"1uGK.t*RA$F/7$FG$\"1$><]$)=)\\MF/7$FL$\" 1MW\\QOw')QF/7$FQ$\"1Aa1#>Qox%F/7$FV$\"198Ijg>`iF/7$Fen$\"1KO#Q)39XxF/ 7$Fjn$\"1()****R+xc')F/7$F_o$\"1k\\a_tZ0\"*F/7$Fdo$\"1lxG$oueL*F/7$Fjo $\"1-kIN@'R]*F/7$F_p$\"1Tw7#ervs*F/7$Fdp$\"1d.j@Ff^l7 $Fjt$\"1#3q8]]g;#Ff^l7$F_u$\"1I08Tuc*=#Ff^l7$Fdu$\"1dkF-]R1AFf^l7$Fiu$ \"1')o%=`G$GAFf^l7$F^v$\"1+r#y=B.F#Ff^l7$Fcv$\"1BIhD`:cBFf^l7$Fhv$\"1v Z/bjH,DFf^l7$F]w$\"1l0+eQl_EFf^l7$Fbw$\"1U-l`^4ZFFf^l7$Fgw$\"1Mq2$o\"z $z#Ff^l7$F\\x$\"1xe-.YbryTpv*GFf^l7$F`y$\"1JC-!efB)HFf^l7$Fey$\"1M-qq,jEJFf^l7$Fj y$\"1e6f!ff'yKFf^l7$F_z$\"1gK*pP/UP$Ff^l7$Fdz$\"1-C=Bf_@MFf^l7$Fiz$\"1 84$o!)RbW$Ff^l-F^[l6&F`[lF(F(Fa[l" 2 247 96 96 2 0 1 0 2 9 0 4 2 1 45 45 10030 0 10056 10074 0 0 0 20530 0 12020 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 309 "In graph 4, we c an tell that the frequency has increased with a larger initial velocit y. The non-linear pendulum just keeps swinging around and around and \+ around all in the same direction, and so the angle keeps increasing. \+ The linear de pendulum does not recognize the difference in angle that is occuring." }}}{PARA 0 "" 0 "" {TEXT -1 0 "" }}}{SECT 1 {PARA 3 "" 0 "" {TEXT -1 54 "Number 5 (Similar to Katie C and Amanda's Problem Se t)" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{EXCHG {PARA 0 "" 0 "" {TEXT -1 0 "" }{TEXT 258 0 "" }{TEXT 259 75 "These are the non-linear equations using the different values for velocity." }}}{EXCHG {PARA 0 "> " 0 " " {MPLTEXT 1 0 48 "eq5:=diff(x(t),t$2)+.5*diff(x(t),t)+sin(x(t))=0:" } }}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 48 "h1:=dsolve(\{eq5,x(0)=0,D( x)(0)=4\},x(t),numeric):" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 40 "q:=odeplot(h1,[t,x(t)],0..20,color=red):" }}}{EXCHG {PARA 0 "> " 0 " " {MPLTEXT 1 0 48 "eq17:=diff(x(t),t$2)+1*diff(x(t),t)+sin(x(t))=0:" } }}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 49 "h2:=dsolve(\{eq17,x(0)=0,D (x)(0)=4\},x(t),numeric):" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 47 "plot5:=odeplot(h2,[t,x(t)],0..20,color=yellow):" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 48 "eq18:=diff(x(t),t$2)+2*diff(x(t),t)+sin(x (t))=0:" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 49 "h3:=dsolve(\{eq1 8,x(0)=0,D(x)(0)=4\},x(t),numeric):" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 45 "plot6:=odeplot(h3,[t,x(t)],0..20,color=blue):" }}} {EXCHG {PARA 0 "" 0 "" {TEXT -1 0 "" }{TEXT 260 0 "" }{TEXT 261 51 "Th is is the solution for the non-linear equations. " }}}{EXCHG {PARA 0 " > " 0 "" {MPLTEXT 1 0 25 "display(\{q,plot5,plot6\});" }}{PARA 13 "" 1 "" {INLPLOT "6%-%'CURVESG6$7T7$\"\"!F(7$$\"+`Ej\"3%!#5$\"1lG[RM?28!# :7$$\"+1`Ej\")F,$\"1k!y**)p:b?F/7$$\"+'z*[C7!\"*$\"1eOG\\tkLCF/7$$\"+h IlK;F8$\"1>UwaP#ff#F/7$$\"+Ej\"3/#F8$\"1&e\\4%y.KEF/7$$\"+\"fz*[CF8$\" 1(yuoD>&)e#F/7$$\"+cG9dGF8$\"1G]zvq\"p[#F/7$$\"+@hIlKF8$\"1%R!R$zv_L#F /7$$\"+'QpMn$F8$\"1Jlj!3Y]8#F/7$$\"+^Ej\"3%F8$\"1#[Pd\"3)f)=F/7$$\"+;f z*[%F8$\"1iPo5?g!f\"F/7$$\"+\"=fz*[F8$\"1V*[l9f&e7F/7$$\"+YC71`F8$\"1/ *[A0eW4*!#;7$$\"+6dG9dF8$\"1#H&fU0l8dFgo7$$\"+w*[C7'F8$\"1uS'=[T4u#Fgo 7$$\"+TAhIlF8$\"1w^t**HR8S!#<7$$\"+1bxQpF8$!1*eJBF0\"37Fgo7$$\"+r(QpM( F8$!11F?!yqd6#Fgo7$$\"+O?5bxF8$!1_5!*zU%fV#Fgo7$$\"+,`Ej\")F8$!16(R'R> JBBFgo7$$\"+m&G9d)F8$!1KTN(p=x$>Fgo7$$\"+J=fz*)F8$!1cY:jab@9Fgo7$$\"+' 4bxQ*F8$!1+9f6(RE())Fgp7$$\"+h$=fz*F8$!1Sx!eB,^7%Fgp7$$\"+j\"3/-\"!\") $!1oIj\\*oM7%!#=7$$\"+!\\C71\"Fcs$\"1p\\*Q@u<6#Fgp7$$\"+<3/-6Fcs$\"1;i C(RG^]$Fgp7$$\"+Wr&G9\"Fcs$\"1aEJurweRFgp7$$\"+rMn$=\"Fcs$\"1oJ*z?dks$ Fgp7$$\"+)z*[C7Fcs$\"1$o3\\d)RpIFgp7$$\"+DhIl7Fcs$\"1fT9!4H&=AFgp7$$\" +_C718Fcs$\"1J>#3^ZNN\"Fgp7$$\"+z(QpM\"Fcs$\"1piS`\"R&efFfs7$$\"+1^v(Q \"Fcs$\"1HO&QxY.<\"!#>7$$\"+L9dG9Fcs$!1E&\\ua&f#y$Ffs7$$\"+gxQp9Fcs$!1 !ff(*4c]'eFfs7$$\"+(3/-^\"Fcs$!1IEgmZSekFfs7$$\"+9/-^:Fcs$!1ui>cMk\")f Ffs7$$\"+Tn$=f\"Fcs$!1Uy9:Srd[Ffs7$$\"+oIlK;Fcs$!1#>n,pA^X$Ffs7$$\"+&R pMn\"Fcs$!1M#3Y[rk0#Ffs7$$\"+AdG9Fcs$\"1s@Md$4me*Fdv7 $$\"+%o$=f>Fcs$\"11OxL%3bn(Fdv7$$\"+6+++?Fcs$\"1a8u.^Tp`Fdv-%'COLOURG6 &%$RGBG$\"*++++\"FcsFe[lF(-F$6$7TF'7$F*$\"1[-5oqy(3\"F/7$F1$\"1hRQiP!> Z\"F/7$F6$\"12@W6q!*G:F/7$F<$\"1v,$)QhVS9F/7$FA$\"1`-!yS#z)G\"F/7$FF$ \"1`?uHe186F/7$FK$\"1\"Q+!)4C8M*Fgo7$FP$\"1xv=Ok`WwFgo7$FU$\"1?39?)>e6 'Fgo7$FZ$\"18nXM!pYz%Fgo7$Fin$\"17V*>ErBp$Fgo7$F^o$\"1nz)*>Or*z#Fgo7$F co$\"1'HPQodZ4#Fgo7$Fio$\"1Ikh&\\%e\\:Fgo7$F^p$\"1/Ymg=DN6Fgo7$Fcp$\"1 -Kp'o'o[#)Fgp7$Fip$\"1[6]GaE^fFgp7$F^q$\"1\"*RGhgonUFgp7$Fcq$\"1meS<6H WIFgp7$Fhq$\"1$[(op(H;;#Fgp7$F]r$\"1zC\\Q&*oG:Fgp7$Fbr$\"1I(HbY8s2\"Fg p7$Fgr$\"1_=t2!elc(Ffs7$F\\s$\"1Z+]v$=(*H&Ffs7$Fas$\"1%*f@![PCq$Ffs7$F hs$\"1B8vM&G0e#Ffs7$F]t$\"1)zA$o?w%z\"Ffs7$Fbt$\"1o]*f&*QeC\"Ffs7$Fgt$ \"1k*)[8ejK')Fdv7$F\\u$\"1^\"z<%R!>(fFdv7$Fau$\"1yZH5]*\\7%Fdv7$Ffu$\" 1(G[(4qFXGFdv7$F[v$\"1#f&fa^,g>Fdv7$F`v$\"1\\![iM\\&[8Fdv7$Ffv$\"1e)Gu R3zE*Fby7$F[w$\"1\\&RFX:EO'Fby7$F`w$\"13=.JVsjVFby7$Few$\"1;yB@-,!*HFb y7$Fjw$\"1rb#z)>%p/#Fby7$F_x$\"196Cv)f,S\"Fby7$Fdx$\"1JwCqF$*p&*!#@7$F ix$\"1Orv%>%3OlFecl7$F^y$\"1**)))\\L#)3Y%Fecl7$Fdy$\"1s3#)3I_UIFecl7$F iy$\"1Nw$f_@Q2#Fecl7$F^z$\"1z)[)R$*o79Fecl7$Fcz$\"1-,\"G)3s<'*!#A7$Fhz $\"1%4#[YMCWlFhdl7$F][l$\"1L_e[tg]WFhdl-Fb[l6&Fd[lF(F(Fe[l-F$6$7TF'7$F *$\"13wJ(o_0W\"F/7$F1$\"1S)f#\\()*Q[#F/7$F6$\"1o+2yZsZKF/7$F<$\"1W@fC* )>')QF/7$FA$\"1(F/7$Fin$\"1T8WWC()=tF/ 7$F^o$\"1V()zJ>e%H(F/7$Fco$\"1G[i,()3[rF/7$Fio$\"1wu(*QaM:pF/7$F^p$\"1 SZaxt+QmF/7$Fcp$\"10fZC$H0O'F/7$Fip$\"1*37CMgG7'F/7$F^q$\"1s]$Q\"pr_fF /7$Fcq$\"1#fw5?w@'eF/7$Fhq$\"1N\\hYf9\\eF/7$F]r$\"1oq%[w'4,fF/7$Fbr$\" 1&H*QVz*))*fF/7$Fgr$\"1w^tbyI?hF/7$F\\s$\"1o8FY\"yLC'F/7$Fas$\"1kPA@3_7yY'F/7$Fbt$\"1R@*pwxUZ'F/7$Fgt$ \"1W?U\"[:8X'F/7$F\\u$\"1.&Q)R,s2kF/7$Fau$\"1q/dtTr`jF/7$Ffu$\"10wsRq? *H'F/7$F[v$\"1tnc#o\"Q_iF/7$F`v$\"1#pUx'F/7$F`w$\"1-\"QLog#4iF/7$Few$\"1_i)4]B*GiF/7$Fjw$\"1pFv Wm,`iF/7$F_x$\"1'HH'H[9xiF/7$Fdx$\"1[H\")Glr(H'F/7$Fix$\"1QSWG6L7jF/7$ F^y$\"1%R*)R%o\"*>jF/7$Fdy$\"1L'Q_TW1K'F/7$Fiy$\"1[M#)>=n:jF/7$F^z$\"1 AYjJ**y1jF/7$Fcz$\"1]fAT*RgH'F/7$Fhz$\"1.&f43k`G'F/7$F][l$\"1DY*pANjF' F/-Fb[l6&Fd[lFe[lF(F(" 2 203 96 96 2 0 1 0 2 9 1 4 2 1 45 45 10030 0 10056 10074 0 0 0 20530 0 12020 0 0 0 0 0 0 0 1 1 0 0 0 233 103 0 0 0 0 0 0 }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 0 "" }{TEXT 264 0 "" }{TEXT 265 535 "In the case b=0.5 (red graph), the pendulum rotates 6.28~2Pi= 360 degrees and then oscillates around the equilibrium position (the \+ de solution recognizes that this is 2Pi and not 0 as the angle). The \+ angle hovers around this equilibrium position, so we see the graph hov ering around 2PI. In b=1 (yellow graph), the pendulm rotates almost t o 180 degrees, it drops the reverse direction to a negative angle, and oscillates constantly at about x=0. In b=2 (blue graph), the pendulu m rotates about 90 degrees and then levels off at x=0." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 0 "" }{TEXT 262 0 "" }{TEXT 263 68 "These are the linear equations for the different v alues of velocity." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 43 "eq6:= diff(x(t),t$2)+.5*diff(x(t),t)+x(t)=0:" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 48 "h4:=dsolve(\{eq6,x(0)=0,D(x)(0)=4\},x(t),numeric):" } }}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 40 "r:=odeplot(h4,[t,x(t)],0.. 20,color=red):" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 43 "eq19:=dif f(x(t),t$2)+1*diff(x(t),t)+x(t)=0:" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 49 "h5:=dsolve(\{eq19,x(0)=0,D(x)(0)=4\},x(t),numeric):" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 43 "s:=odeplot(h5,[t,x(t)],0. .20,color=yellow):" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 43 "eq20: =diff(x(t),t$2)+2*diff(x(t),t)+x(t)=0:" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 49 "h6:=dsolve(\{eq20,x(0)=0,D(x)(0)=4\},x(t),numeric):" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 45 "plot7:=odeplot(h6,[t,x(t) ],0..20,color=blue):" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 21 "dis play(\{r,s,plot7\});" }}{PARA 13 "" 1 "" {INLPLOT "6%-%'CURVESG6$7T7$ \"\"!F(7$$\"+`Ej\"3%!#5$\"1yr]kD]&3\"!#:7$$\"+1`Ej\")F,$\"1*\\5a(oVV9F /7$$\"+'z*[C7!\"*$\"14e10vaR9F/7$$\"+hIlK;F8$\"1[\")R!))\\hF\"F/7$$\"+ Ej\"3/#F8$\"1&QKXs#fg5F/7$$\"+\"fz*[CF8$\"1f&zsjlFJ7$$\"+@hIlKF8$\"1*4l%o/Y()\\FJ7$$\"+'QpMn$F8$\"1M]EZi^IP FJ7$$\"+^Ej\"3%F8$\"1S/=\"[**ev#FJ7$$\"+;fz*[%F8$\"1-b;\\ta:?FJ7$$\"+ \"=fz*[F8$\"1Wbx]G!>Y\"FJ7$$\"+YC71`F8$\"1MD.+Q(H0\"FJ7$$\"+6dG9dF8$\" 1FpY;=WRv!#<7$$\"+w*[C7'F8$\"16n7)p/3P&F]p7$$\"+TAhIlF8$\"1\\N()zx%*3Q F]p7$$\"+1bxQpF8$\"1]D8QZt!p#F]p7$$\"+r(QpM(F8$\"1h:I]UA%*=F]p7$$\"+O? 5bxF8$\"1y*yL\"3QH8F]p7$$\"+,`Ej\")F8$\"1dT)\\L]QI*!#=7$$\"+m&G9d)F8$ \"1)>d'>h9&\\'F\\r7$$\"+J=fz*)F8$\"1D_$)***oS_%F\\r7$$\"+'4bxQ*F8$\"11 7$$\"+Wr&G9\"Fds$\"1xd=+Jxt\\Fat7$$\"+rMn$=\"Fds$\"1.*f.!)3]U$Fat7 $$\"+)z*[C7Fds$\"1q3MTMqbBFat7$$\"+DhIl7Fds$\"1#3,(\\,W=;Fat7$$\"+_C71 8Fds$\"1SlVV0w56Fat7$$\"+z(QpM\"Fds$\"1\\.zfe(eh(!#?7$$\"+1^v(Q\"Fds$ \"15YEUE*p@&F`v7$$\"+L9dG9Fds$\"1y_8o'G1d$F`v7$$\"+gxQp9Fds$\"1`oL/W#= W#F`v7$$\"+(3/-^\"Fds$\"1qKmVreo;F`v7$$\"+9/-^:Fds$\"1RQM.JPR6F`v7$$\" +Tn$=f\"Fds$\"1e?,**Hnux!#@7$$\"+oIlK;Fds$\"1VT7X$p;I&F_x7$$\"+&RpMn\" Fds$\"1\\\"fG?IIh$F_x7$$\"+AdG9U/v;F_x7$$\"+w$=fz\"Fds$\"1c)>[y\"eR6F_x7$$\"+.ZtO=Fds$\"1$y\"plX !*[x!#A7$$\"+I5bx=Fds$\"1bYBR<[m_F^z7$$\"+dtO=>Fds$\"1vVj`4jxNF^z7$$\" +%o$=f>Fds$\"1(\\Yg/f#HCF^z7$$\"+6+++?Fds$\"13DXIKy[;F^z-%'COLOURG6&%$ RGBGF(F($\"*++++\"Fds-F$6$7TF'7$F*$\"1@'f(R\"3PI\"F/7$F1$\"1JL$\\8HY*> F/7$F6$\"1A3EBz\"\\=#F/7$F<$\"1PL$*R/o;?F/7$FA$\"1(=x2WlFj\"F/7$FF$\"1 [B#GlWs:\"F/7$FL$\"1\"Rr/+x'\\oFJ7$FQ$\"1D%f3v'f&y#FJ7$FV$!1JhZ*y&yAHF ]p7$Fen$!1Vp+$)oB*H#FJ7$Fjn$!1mVo7pUBLFJ7$F_o$!1qV\"4$e.cNFJ7$Fdo$!1oV :Ag'4B$FJ7$Fio$!1>S$>]l*yDFJ7$F_p$!1\"p<*Qhb(z\"FJ7$Fdp$!1/GZr@_N5FJ7$ Fip$!1=zMl*><*QF]p7$F^q$\"1P**\\\"z,oI*F\\r7$Fcq$\"1=\"yj.)R6SF]p7$Fhq $\"1:R&p\"4_=bF]p7$F^r$\"1KWsa)*3wdF]p7$Fcr$\"1M,JC.7o^F]p7$Fhr$\"19<' \\p(pmSF]p7$F]s$\"1mMxB%zdy#F]p7$Fbs$\"1y&p[A@$e:F]p7$Fhs$\"1_XdPY'*>` F\\r7$F]t$!1yw/*o\\9A#F\\r7$Fct$!1i:Cp%Ge$pF\\r7$Fht$!1WX&HK0Y8*F\\r7$ F]u$!19l,h!3UO*F\\r7$Fbu$!1c3O;;f`#)F\\r7$Fgu$!1\"oT^YI'oI%F\\r7$Fbv$!1Y#*=o?.LBF\\r7$Fgv$!1_TU3LbfqFat7$F\\w$\"1VjT&Q e2r%Fat7$Faw$\"1*R-C_)4!>\"F\\r7$Ffw$\"1C/&Rv0w]\"F\\r7$F[x$\"1'*3`YUK ::F\\r7$Fax$\"1Tr(=?KgJ\"F\\r7$Ffx$\"1JNC*R!*f+\"F\\r7$F[y$\"1U'z.!QST mFat7$F`y$\"1`(z/%3fsMFat7$Fey$\"1tNE38us*)F`v7$Fjy$!1!G/Ru]-O*F`v7$F` z$!1?aG(G\\'G?Fat7$Fez$!18+)e')G9[#Fat7$Fjz$!1h*>$>FqZCFat7$F_[l$!18uf x&p]4#Fat-Fd[l6&Ff[lFg[lFg[lF(-F$6$7TF'7$F*$\"1;3E9e>O9F/7$F1$\"1\"p%Q ^!>QR#F/7$F6$\"1GuT$*f*)=GF/7$F<$\"1Q*Q!fFcYFF/7$FA$\"1n4!pQ$RzAF/7$FF $\"1ymO2$FJ7$F^q$\"1)o)oWFYf[FJ7$Fcq$\"1z1x)[FMf&FJ7$Fhq$ \"16!)pWUhg`FJ7$F^r$\"1<*HHc%4uVFJ7$Fcr$\"1?7rt0i>HFJ7$Fhr$\"1byq#))R( *H\"FJ7$F]s$!1g.f(=!pU@F]p7$Fbs$!1V@&eETpT\"FJ7$Fhs$!1]-*\\$>,(=#FJ7$F ]t$!1$Q[]e%*)*[#FJ7$Fct$!1OZF7-#oO#FJ7$Fht$!14wFeLr9>FJ7$F]u$!1_w[+h]h 7FJ7$Fbu$!1Bi?I*3ST&F]p7$Fgu$\"1%GF6$*=BE\"F]p7$F\\v$\"14mr7^c=lF]p7$F bv$\"1vT[%))3d$)*F]p7$Fgv$\"12$><)G(y5\"FJ7$F\\w$\"1!)**fR\"yX/\"FJ7$F aw$\"1p[]ebCx$)F]p7$Ffw$\"1$[b^+fbW&F]p7$F[x$\"1Ul6M\\wXAF]p7$Fax$!1\" *y.CF&4(pF\\r7$Ffx$!1i0'y5!4$*HF]p7$F[y$!1j3+HqS?WF]p7$F`y$!1(4W'eBGF \\F]p7$Fey$!1,!QAc-$3YF]p7$Fjy$!1WV;],LjOF]p7$F`z$!1RJF#3m$[BF]p7$Fez$ !1T#o#y%*Rr#*F\\r7$Fjz$\"1p&*4#o<^p$F\\r7$F_[l$\"1x\"*Qr*z=P\"F]p-Fd[l 6&Ff[lFg[lF(F(" 2 209 125 125 2 0 1 0 2 9 0 4 2 1 45 45 10030 0 10056 10074 0 0 0 20530 0 12020 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 }}} {EXCHG {PARA 0 "" 0 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 0 "" }{TEXT 266 0 "" }{TEXT 267 369 "In the case b=0.5 (red graph), the pendulum rotates a little less than 180 degrees, then oscillates constantly below and above the x-axis. In b=1 (yellow graph), the pe ndulm rotates between 90 and 180 degrees, it drops to a negative angle , and oscillates constantly at about x=0. In b=2 (blue graph), the pe ndulum rotates about 90 degrees and then levels off at x=0." }}} {EXCHG {PARA 0 "" 0 "" {TEXT -1 0 "" }{TEXT 268 0 "" }{TEXT 269 134 "T he linear solutions do not rotate as far around as the non-linear solu tions and the linear solutions oscillate more below the x-axis." }}}} {SECT 1 {PARA 3 "" 0 "" {TEXT -1 56 "Number 6 (Similar to David's and \+ Rebekah's Problem Sets)" }}{PARA 0 "" 0 "" {TEXT -1 168 "In this probl em, we look at the effect of a periodic external foce on the pendulum. The book has chosen a damping coefficient that is more typical of ai r resistance. " }}{SECT 0 {PARA 4 "" 0 "" {TEXT -1 4 "D.E." }}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 50 "restart:with(plots):with(plottools) :with(DEtools):" }}{PARA 7 "" 1 "" {TEXT -1 37 "Warning, new definitio n for translate" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 44 "The omega is o ur variable in this problem. " }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 58 "d iff(y(t),t$2)+.05*diff(y(t),t)+sin(y(t))=.3*cos(omega*t);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#/,(-%%diffG6$-%\"yG6#%\"tG-%\"$G6$F+\"\"#\"\"\" -F&6$F(F+$\"\"&!\"#-%$sinG6#F(F0,$-%$cosG6#*&%&omegaGF0F+F0$\"\"$!\"\" " }}}}{SECT 0 {PARA 4 "" 0 "" {TEXT -1 40 "Non-Linear functions with v arying omega." }}{EXCHG {PARA 0 "" 0 "" {TEXT -1 79 "This equation rep resents the non-linear function with the omega variabe of 0.6." }} {PARA 0 "> " 0 "" {MPLTEXT 1 0 60 "eq1:=diff(y(t),t$2)+.05*diff(y(t),t )+sin(y(t))=.3*cos(.6*t):" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 30 "ivp.6:=\{eq1,y(0)=0,D(y)(0)=0\}:" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 80 "This equation represents the non-linear function with the omega variable of 0.8." }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 61 "eq1a:=diff(y(t ),t$2)+.05*diff(y(t),t)+sin(y(t))=.3*cos(.8*t):" }}}{EXCHG {PARA 0 "> \+ " 0 "" {MPLTEXT 1 0 31 "ivp.8:=\{eq1a,y(0)=0,D(y)(0)=0\}:" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 78 "This equation represents the non-linear f unction with the omega variable of 1." }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 60 "eq1b:=diff(y(t),t$2)+.05*diff(y(t),t)+sin(y(t))=.3*cos(1*t):" }} }{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 30 "ivp1:=\{eq1b,y(0)=0,D(y)(0) =0\}:" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 80 "This equation represents the non-linear function with the omega variable of 1.2." }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 62 "eq1c:=diff(y(t),t$2)+.05*diff(y(t),t)+sin(y(t ))=.3*cos(1.2*t):" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 32 "ivp1.2 :=\{eq1c,y(0)=0,D(y)(0)=0\}:" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 56 "T his will plot the function with the omega of .6 in red." }}{PARA 0 "> \+ " 0 "" {MPLTEXT 1 0 84 "inNL.6:=odeplot(dsolve(ivp.6,y(t),numeric,maxf un=4000000),[t,y(t)],0..60,color=red):" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 57 "This will plot the function with the omega of .8 in blue. " }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 85 "inNL.8:=odeplot(dsolve(ivp.8,y( t),numeric,maxfun=4000000),[t,y(t)],0..60,color=blue):" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 57 "This will plot the function with the omeg a of 1 in green." }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 84 "inNL1:=odeplot( dsolve(ivp1,y(t),numeric,maxfun=4000000),[t,y(t)],0..60,color=green): " }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 60 "This will plot the function w ith the omega of 1.2 in maroon." }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 89 " inNL1.2:=odeplot(dsolve(ivp1.2,y(t),numeric,maxfun=4000000),[t,y(t)],0 ..60,color=maroon):" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 37 "disp lay(inNL.6,inNL.8,inNL1,inNL1.2);" }}{PARA 13 "" 1 "" {INLPLOT "6&-%'C URVESG6$7T7$\"\"!F(7$$\"+'z*[C7!\"*$\"1lE'Q'R#*\\=!#;7$$\"+#fz*[CF,$\" 1CcGMm.bRF/7$$\"+)QpMn$F,$\"1\\77.:X=8F/7$$\"+%=fz*[F,$!1D(>8%pc7]F/7$ $\"+!)*[C7'F,$!1Dc6!ost^)F/7$$\"+w(QpM(F,$!1Xmr[7Ey]F/7$$\"+s&G9d)F,$ \"1K1yXM['=$F/7$$\"+o$=fz*F,$\"1O_)3mYVk)F/7$$\"+;3/-6!\")$\"1E$zd_kl= (F/7$$F+FV$\"1hBbchC/$)!#<7$$\"+w(QpM\"FV$!1!3:c9*z'R%F/7$$\"+cxQp9FV$ !1<(o(Q`!\\o%F/7$$\"+On$=f\"FV$!1:*f'>X;g@F/7$$\"+;dG9FV$\"1$z(Q>^Y`AFgn7$$\"+cEj \"3#FV$\"1ap$*)f#fMMF/7$$\"+O;3/AFV$\"1:b%R;aT#eF/7$$\"+;1`EBFV$\"1+RV )G4r$QF/7$$\"+'fz*[CFV$!1)fH)*HwQ;#F/7$$\"+w&G9d#FV$!1y\"\\mz!o$3(F/7$ $\"+cv(Qp#FV$!1ZSoygn6oF/7$$\"+OlK;GFV$!10j7oSQ1xfF/7$$\"+wK;3WFV$\"1)H9%Q\"= Nu\"F/7$$\"+cAhIXFV$!1hYuIL\"*4NF/7$$\"+O71`YFV$!1E![*f\\V&y&F/7$$\"+; -^vZFV$!1,.iXr'>H%F/7$$\"+'>fz*[FV$!17&=\"*Qibi*Fgn7$$\"+w\"3/-&FV$\"1 q_sw.E%y\"F/7$$\"+cr&G9&FV$\"1YWH)[4^6$F/7$$\"+OhIl_FV$\"1kU$pT]%\\NF/ 7$$\"+;^v(Q&FV$\"1Oixt3p+JF/7$$\"+'4/-^&FV$\"1XX.Mqdw**Fgn7$$\"+wIlKcF V$!13$\\wa#GQDF/7$$\"+c?5bdFV$!1([20H#zO`F/7$$\"+O5bxeFV$!1fNslzd4*Fgn7$F;$!1Le3Aaboq F/7$F@$!1Z6!#:7$FO$\"1*)f x4uuD6Fi\\l7$FT$!1G,\"=-3\"f!)Fgn7$FZ$!1dtDH\\1G9Fi\\l7$Fin$!12u4[AcY< Fi\\l7$F^o$!1^bC6sPpqF/7$Fco$\"1mkX\"zXEB\"Fi\\l7$Fho$\"1`!fL%Qf'Q#Fi \\l7$F]p$\"1_i!ehI9h#Fi\\l7$Fbp$\"1(H%Gr'e\"yLJK9*Fi\\l7$F_s$!1u%)=o$\\b)*)Fi\\l7$Fds$!1!>a[9>R\"yFi\\l7$Fis $!1;FX83o&H&Fi\\l7$F^t$!1WWMOi'4d$Fi\\l7$Fct$!1Ab%*Qg\"H$GFi\\l7$Fht$! 1kCode/3@Fi\\l7$F]u$!1()4a]FZWVF/7$Fbu$\"1kE\\MzWB]PqFi\\l7$Fdx$\"1U)z\"Hn shpFi\\l7$Fix$\"17(Q7#)>`v&Fi\\l7$F^y$\"1l*=jW#>@^Fi\\l7$Fcy$\"1(Q>.#G -7gFi\\l7$Fhy$\"1itL$o\"f;vFi\\l7$F]z$\"1uTtbt\"z\"zFi\\l7$Fbz$\"1hsH/ ,r#p'Fi\\l7$Fgz$\"1:_#p'o:dZFi\\l-F\\[l6&F^[lF(F(F_[l-F$6$7TF'7$F*$\"1 LCb`GE#p\"F/7$F1$\"1t.+^Y#fC#F/7$F6$!1,Q?*=Llo#F/7$F;$!1/2hw0x#*oF/7$F @$!1H))Rao\\g=F/7$FE$\"1Ha(G^?+])F/7$FJ$\"11(=`_GB.\"Fi\\l7$FO$!1_0z$> _Uh\"F/7$FT$!1A')\\yF`I9Fi\\l7$FZ$!1`tjSM6k7Fi\\l7$Fin$\"1WCSc&=!=XF/7 $F^o$\"1#RQLo(\\M=Fi\\l7$Fco$\"1dl;Es/ij$F/7$F]p$ !1\\f#GtDZ&=Fi\\l7$Fbp$!1!z<^0a&R:Fi\\l7$Fgp$\"1RvT_NcIIF/7$F\\q$\"1)* \\D4U_'e\"Fi\\l7$Faq$\"1)e*zB@!)35Fi\\l7$Ffq$!1$H?!p))*=U'F/7$F[r$!1'= _1(F/7$Fis$\"1$=.W)**z#4$F/7$F ^t$\"1$36C.$Q4))F/7$Fct$\"1[RD(>KJ@'Fgn7$Fht$!1r6)e/&f#y*F/7$F]u$!15*z eiN**f'F/7$Fbu$\"1:On4o,IsF/7$Fgu$\"1*HGM&3?d7Fi\\l7$F\\v$\"1i7%y\">PY 8F/7$Fav$!1+p+V_278Fi\\l7$Ffv$!1Z1=nsNN7Fi\\l7$F[w$\"1\"Qz87U`1%F/7$F` w$\"1Vbo+jV8;Fi\\l7$Few$\"1:#f;Ge(=5Fi\\l7$Fjw$!12%*)*>)=oA)F/7$F_x$!1 1**pP+qH;Fi\\l7$Fdx$!1'=j%[6ZZeF/7$Fix$\"15U'QZb>8\"Fi\\l7$F^y$\"1LZ$ \\-&Hc8Fi\\l7$Fcy$!1#G@z_GUp'Fgn7$Fhy$!1=0QW*\\SG\"Fi\\l7$F]z$!1Gey<>! \\p(F/7$Fbz$\"1-.(=OV=I(F/7$Fgz$\"1wmhN31?6Fi\\l-F\\[l6&F^[lF(F_[lF(-F $6$7TF'7$F*$\"1&=f`&\\%)*e\"F/7$F1$\"1Qa'\\_#y\\8F/7$F6$!19lzRY!>p$F/7 $F;$!16N!*[hXhZF/7$F@$\"1\\EhI^%R0$F/7$FE$\"1U,#4?9!Q#)F/7$FJ$\"1>_ted l\\uFgn7$FO$!1$zMxu+'o#*F/7$FT$!1AFkgVZveF/7$FZ$\"1&QuXsskk'F/7$Fin$\" 17\">*)QWU/*F/7$F^o$!1DI&f![M!*=F/7$Fco$!1X&Qp.S-z)F/7$Fho$!1A@(R&[<9> F/7$F]p$\"1l#y\"HQQKjF/7$Fbp$\"1Cx.oRz/KF/7$Fgp$!18rQpfa6QF/7$F\\q$!1' HGB&R70DF/7$Faq$\"11\"pH6_)REF/7$Ffq$\"1k\\h(z7O;\"F/7$F[r$!1`9H^ZFgn7$Fer$\"1EZTB/L*[%F/7$Fjr$\"15uqud\">B\"F/7$F_s$!1 6x*)oG*\\w&F/7$Fds$!1S$G3arYX$F/7$Fis$\"1?!37UZ_s&F/7$F^t$\"1ol[zs#o>' F/7$Fct$!1/$HFEF;$QF/7$Fht$!1ph_#QF/7$Ffv$\"1J/u\\iIJYF/7$F[w$\"1l%QE$G`\"4%F/7$F`w$!1Rf%o.>wE$F/7$F ew$!1b3A#>\"f&p$F/7$Fjw$\"1o@_yA^*z#F/7$F_x$\"1PTE *pZ7%HF/7$Fix$!1/LmcmBhQF/7$F^y$\"1'R?y:e.1$F/7$Fcy$\"1WF%FV" 2 195 131 131 2 0 1 0 2 9 0 4 2 1 45 45 10030 0 10056 10074 0 0 0 20530 0 12020 0 0 0 0 0 0 0 1 1 0 0 0 276 260 0 0 0 0 0 0 }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 88 "The frequency that moves the pendulum farthest away from the eq uilibrium point is 0.8. " }}}}{SECT 0 {PARA 4 "" 0 "" {TEXT -1 36 "Li near functions with varying omega." }}{EXCHG {PARA 0 "" 0 "" {TEXT -1 75 "This equation represents the linear function with the omega variab e of 0.6." }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 58 "eq2a:=diff(y(t),t$2)+. 05*diff(y(t),t)+(y(t))=.3*cos(.6*t):" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 32 "ivpL.6:=\{eq2a,y(0)=0,D(y)(0)=0\}:" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 75 "This equation represents the linear function wi th the omega variabe of 0.8." }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 56 "eq2 b:=diff(y(t),t$2)+.05*diff(y(t),t)+y(t)=.3*cos(.8*t):" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 32 "ivpL.8:=\{eq2b,y(0)=0,D(y)(0)=0\}: " }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 73 "This equation represents the \+ linear function with the omega variabe of 1." }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 55 "eq2c:=diff(y(t),t$2)+.05*diff(y(t),t)+y(t)=.3*cos(1*t ):" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 31 "ivpL1:=\{eq2c,y(0)=0, D(y)(0)=0\}:" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 75 "This equation rep resents the linear function with the omega variabe of 1.2." }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 57 "eq2d:=diff(y(t),t$2)+.05*diff(y(t),t)+y(t)= .3*cos(1.2*t):" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 33 "ivpL1.2:= \{eq2d,y(0)=0,D(y)(0)=0\}:" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 58 "Thi s will plot the function with the omega of .6 in coral." }}{PARA 0 "> \+ " 0 "" {MPLTEXT 1 0 86 "inL.6:=odeplot(dsolve(ivpL.6,y(t),numeric,maxf un=4000000),[t,y(t)],0..60,color=coral):" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 59 "This will plot the function with the omega of .8 in viole t." }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 87 "inL.8:=odeplot(dsolve(ivpL.8, y(t),numeric,maxfun=4000000),[t,y(t)],0..60,color=violet):" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 58 "This will plot the function with the omeg a of 1 in orange." }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 85 "inL1:=odeplot( dsolve(ivpL1,y(t),numeric,maxfun=4000000),[t,y(t)],0..60,color=orange) :" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 58 "This will plot the function \+ with the omega of 1.2 in navy." }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 87 "i nL1.2:=odeplot(dsolve(ivpL1.2,y(t),numeric,maxfun=4000000),[t,y(t)],0. .60,color=navy):" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 33 "display (inL.6,inL.8,inL1,inL1.2);" }}{PARA 13 "" 1 "" {INLPLOT "6&-%'CURVESG6 $7T7$\"\"!F(7$$\"+'z*[C7!\"*$\"1uvgb2e\\=!#;7$$\"+#fz*[CF,$\"1T?`e\"pd #RF/7$$\"+)QpMn$F,$\"1T@d7SS.7F/7$$\"+%=fz*[F,$!1JNYG:Hy]F/7$$\"+!)*[C 7'F,$!1nr/Gw>o!)F/7$$\"+w(QpM(F,$!1WU`B#*z)o$F/7$$\"+s&G9d)F,$\"1EL#y \\s`2%F/7$$\"+o$=fz*F,$\"1a\"GIq*>(p(F/7$$\"+;3/-6!\")$\"1/yhiW$)4YF/7 $$F+FV$!1r%yQh)H=u!#<7$$\"+w(QpM\"FV$!1auQz5@gIF/7$$\"+cxQp9FV$!1Tv-S% y+;#F/7$$\"+On$=f\"FV$!1(Q;Oglzb\"F/7$$\"+;dG9FV$\"1S$o3vSaN)Fgn7$$\"+cEj\"3#FV$\"1 `5kd!*[lbF/7$$\"+O;3/AFV$\"1y]a%>&)Q`'F/7$$\"+;1`EBFV$\"1P+\"e!*H)e>F/ 7$$\"+'fz*[CFV$!1/+4_7l\"Fgn7$ $\"+cAhIXFV$!1N(4j1eBV#F/7$$\"+O71`YFV$!1/Q\\/aC_JF/7$$\"+;-^vZFV$!1KY &)3dlEKF/7$$\"+'>fz*[FV$!1Hq0io'yb#F/7$$\"+w\"3/-&FV$!1>%zO?)fTDFgn7$$ \"+cr&G9&FV$\"1(o[4aU_D$F/7$$\"+OhIl_FV$\"1>tDaC)o\\&F/7$$\"+;^v(Q&FV$ \"1Cuzeh7jTF/7$$\"+'4/-^&FV$!1@q[\\B)3$>Fgn7$$\"+wIlKcFV$!1k^1%[=1L%F/ 7$$\"+c?5bdFV$!1jQ2kGuK`F/7$$\"+O5bxeFV$!1Fgn-%'COLOURG6&%$RGBG$\"*++++\"FV$\")AR!)\\FVF(-F$6$7TF'7$F*$ \"13$f$=7Lz6!#:7$FO$\"13]P#zkE L(F/7$FT$!1&oj*)=gMl&F/7$FZ$!1+o[u'RDN\"F[]l7$Fin$!1:l7e\"RI(oF/7$F^o$ \"1SFf%z$3UuF/7$Fco$\"1^e`G$)*4Q\"F[]l7$Fho$\"1M*os\"o3sbF/7$F]p$!1:(p a=W\"*)yF/7$Fbp$!1,S'=L(*=B\"F[]l7$Fgp$!1xdjG#)\\?UF/7$F\\q$\"1h(fw/zz v'F/7$Faq$\"1h&zO!o:j'*F/7$Ffq$\"1(y3KPE8W$F/7$F[r$!11f51q&yB%F/7$F`r$ !1\\6hIC_zlF/7$Fer$!1HV([_#3YNF/7$Fjr$\"1`+)3f:kQ)Fgn7$F_s$\"1V:r2/SDP F/7$Fds$\"1dp:\\O)z\\%F/7$Fis$\"1P'**es<&zFF/7$F^t$!1[+hTb[I:F/7$Fct$! 1C5&3kDU(fF/7$Fht$!16lV7\"Rr)fF/7$F]u$\"1 p\"F/7$F1$\"1#HH,Yw_M[F/7$Fin$\"1\"[#y(G*3d8F[]l7$F^o$\"1 `Kqs]*[b\"F[]l7$Fco$!1kt1P6y2VF/7$Fho$!1rK^E`wt?F[]l7$F]p$!1;-*R/%o/5F []l7$Fbp$\"1LP*fkwke\"F[]l7$Fgp$\"1+o[ts0OAF[]l7$F\\q$!1$)Q^\\BY*\\\"F /7$Faq$!1kAzLOtODF[]l7$Ffq$!14RAXihE;F[]l7$F[r$\"1/,G_$eOe\"F[]l7$F`r$ \"1qufs*pD&GF[]l7$Fer$\"1Id1o9!35$F/7$Fjr$!1fY6K.;7GF[]l7$F_s$!12yher- \"H#F[]l7$Fds$\"1^L7Lt[p8F[]l7$Fis$\"1Ko%=5_DO$F[]l7$F^t$\"1zp7K\\n2!* F/7$Fct$!1@gHk@n#*GF[]l7$Fht$!1**pb5C6YHF[]l7$F]u$\"1T@>an#3s*F/7$Fbu$ \"1t,X)eL^t$F[]l7$Fgu$\"1'=JOO^Rd\"F[]l7$F\\v$!1e)*G]7B\"y#F[]l7$Fav$! 1M;PjOKZNF[]l7$Ffv$\"1&RIHX%eYUF/7$F[w$\"1;;&>>I)\\RF[]l7$F`w$\"1s,u@> ]$G#F[]l7$Few$!1Lk@&yU%*[#F[]l7$Fjw$!1\"Q56p]y0%F[]l7$F_x$!1.rl>M8kBF/ 7$Fdx$\"16M6nCt&*RF[]l7$Fix$\"1Oma`rk')HF[]l7$F^y$!11,)\\%z!f.#F[]l7$F cy$!1%=2W*z!)[WF[]l7$Fhy$!12)ea+eIt*F/7$F]z$\"12$*feacqQF[]l7$Fbz$\"1. NG'Q!*\\k$F[]l7$Fgz$!1H?!)p9lW9F[]l-F\\[l6&F^[l$\")+++!)FV$\")Vyg>FVFj ^m-F$6$7TF'7$F*$\"1[`<\"R!e*e\"F/7$F1$\"1H*)**HY'*R8F/7$F6$!1&Q#\\6UY. PF/7$F;$!1E,`+**\\>YF/7$F@$\"1Ting'3WM$F/7$FE$\"1NUV@I!f0)F/7$FJ$!1Ztl S[ynVFgn7$FO$!1.0W8jP)*)*F/7$FT$!1bfVIM9CRF/7$FZ$\"1ThQtsR+#*F/7$Fin$ \"1&*)p,x3u1)F/7$F^o$!1l]O!e#yahF/7$Fco$!1Z=^WLy_5F[]l7$Fho$\"1v%eyZqX *=F/7$F]p$\"19+_9E1l5F[]l7$Fbp$\"14^&>H)>#4#F/7$Fgp$!1*H=\"p,Ov()F/7$F \\q$!1)*[e1u\"Qj%F/7$Faq$\"1f(y\\$zenfF/7$Ffq$\"1!y=fqB$H`F/7$F[r$!1!Q T'\\6(zY$F/7$F`r$!1KL%\\_'*Gh%F/7$Fer$\"12gI[AuK@F/7$Fjr$\"1B?!3z5fW$F /7$F_s$!1CIH!\\m86#F/7$Fds$!1b435gH:GF/7$Fis$\"1@lPaU)[(GF/7$F^t$\"1ps 7co,\"G$F/7$Fct$!1Kd!Q\\+;a$F/7$Fht$!1h***>9$*ew%F/7$F]u$\"1y(z`!odALF /7$Fbu$\"1@&y-O_Cl'F/7$Fgu$!1in0&4is(=F/7$F\\v$!1f%f?XT%4\")F/7$Fav$!1 Lh$>tG(pcFgn7$Ffv$\"1>\\s@ozy%)F/7$F[w$\"1\\E7(eQuN$F/7$F`w$!1-cd2GrYv F/7$Few$!1u(zU+F\"HdF/7$Fjw$\"1;!>z\\VLf&F/7$F_x$\"1!Qwjp(HKrF/7$Fdx$! 1isojleCKF/7$Fix$!1qh[ryMIuF/7$F^y$\"1 \+ " 0 "" {MPLTEXT 1 0 22 "display(inNL.6,inL.6);" }}{PARA 13 "" 1 "" {INLPLOT "6$-%'CURVESG6$7T7$\"\"!F(7$$\"+'z*[C7!\"*$\"1lE'Q'R#*\\=!#;7 $$\"+#fz*[CF,$\"1CcGMm.bRF/7$$\"+)QpMn$F,$\"1\\77.:X=8F/7$$\"+%=fz*[F, $!1D(>8%pc7]F/7$$\"+!)*[C7'F,$!1Dc6!ost^)F/7$$\"+w(QpM(F,$!1Xmr[7Ey]F/ 7$$\"+s&G9d)F,$\"1K1yXM['=$F/7$$\"+o$=fz*F,$\"1O_)3mYVk)F/7$$\"+;3/-6! \")$\"1E$zd_kl=(F/7$$F+FV$\"1hBbchC/$)!#<7$$\"+w(QpM\"FV$!1!3:c9*z'R%F /7$$\"+cxQp9FV$!1<(o(Q`!\\o%F/7$$\"+On$=f\"FV$!1:*f'>X;g@F/7$$\"+;dG9< FV$!1)*)G)e`KioFgn7$$\"+'pMn$=FV$!1=I([7_'pzFgn7$$\"+wO=f>FV$\"1$z(Q>^ Y`AFgn7$$\"+cEj\"3#FV$\"1ap$*)f#fMMF/7$$\"+O;3/AFV$\"1:b%R;aT#eF/7$$\" +;1`EBFV$\"1+RV)G4r$QF/7$$\"+'fz*[CFV$!1)fH)*HwQ;#F/7$$\"+w&G9d#FV$!1y \"\\mz!o$3(F/7$$\"+cv(Qp#FV$!1ZSoygn6oF/7$$\"+OlK;GFV$!10j7oSQ1xfF/7$$\"+wK; 3WFV$\"1)H9%Q\"=Nu\"F/7$$\"+cAhIXFV$!1hYuIL\"*4NF/7$$\"+O71`YFV$!1E![* f\\V&y&F/7$$\"+;-^vZFV$!1,.iXr'>H%F/7$$\"+'>fz*[FV$!17&=\"*Qibi*Fgn7$$ \"+w\"3/-&FV$\"1q_sw.E%y\"F/7$$\"+cr&G9&FV$\"1YWH)[4^6$F/7$$\"+OhIl_FV $\"1kU$pT]%\\NF/7$$\"+;^v(Q&FV$\"1Oixt3p+JF/7$$\"+'4/-^&FV$\"1XX.Mqdw* *Fgn7$$\"+wIlKcFV$!13$\\wa#GQDF/7$$\"+c?5bdFV$!1([20H#zO`F/7$$\"+O5bxe FV$!1fNso!)F/7$FE$!1WU`B#*z)o$F/7$FJ$\"1EL#y\\ s`2%F/7$FO$\"1a\"GIq*>(p(F/7$FT$\"1/yhiW$)4YF/7$FZ$!1r%yQh)H=uFgn7$Fin $!1auQz5@gIF/7$F^o$!1Tv-S%y+;#F/7$Fco$!1(Q;Oglzb\"F/7$Fho$!1)\\eqKw_i# F/7$F]p$!1VPZ!H7'REF/7$Fbp$\"1S$o3vSaN)Fgn7$Fgp$\"1`5kd!*[lbF/7$F\\q$ \"1y]a%>&)Q`'F/7$Faq$\"1P+\"e!*H)e>F/7$Ffq$!1/+4_7l\"Fgn7$F[w$!1N(4j1eBV#F/7$F`w$!1/Q\\/aC_JF/7$F ew$!1KY&)3dlEKF/7$Fjw$!1Hq0io'yb#F/7$F_x$!1>%zO?)fTDFgn7$Fdx$\"1(o[4aU _D$F/7$Fix$\"1>tDaC)o\\&F/7$F^y$\"1Cuzeh7jTF/7$Fcy$!1@q[\\B)3$>Fgn7$Fh y$!1k^1%[=1L%F/7$F]z$!1jQ2kGuK`F/7$Fbz$!1F gn-F\\[l6&F^[lF_[l$\")AR!)\\FVF(" 2 180 154 154 2 0 1 0 2 9 0 4 2 1 45 45 10030 0 10056 10074 0 0 0 20530 0 12020 0 0 0 0 0 0 0 1 1 0 0 0 163 71 0 0 0 0 0 0 }}}}{SECT 0 {PARA 5 "" 0 "" {TEXT -1 11 "Omega of . 8" }}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 22 "display(inNL.8,inL.8); " }}{PARA 13 "" 1 "" {INLPLOT "6$-%'CURVESG6$7T7$\"\"!F(7$$\"+'z*[C7! \"*$\"1&4T:(>lz d4*!#<7$$\"+%=fz*[F,$!1Le3AaboqF/7$$\"+!)*[C7'F,$!1Z6!#:7$$\"+o$=fz*F,$\"1* )fx4uuD6FO7$$\"+;3/-6!\")$!1G,\"=-3\"f!)F:7$$F+FX$!1dtDH\\1G9FO7$$\"+w (QpM\"FX$!12u4[AcYFX$\"1(H%Gr'e\"yLJK9*FO7$$\"+'\\C71$FX$!1u%)=o$\\b)* )FO7$$\"+wMn$=$FX$!1!>a[9>R\"yFO7$$\"+cC71LFX$!1;FX83o&H&FO7$$\"+O9dGM FX$!1WWMOi'4d$FO7$$\"+;/-^NFX$!1Ab%*Qg\"H$GFO7$$\"+'RpMn$FX$!1kCode/3@ FO7$$\"+w$=fz$FX$!1()4a]FZWVF/7$$\"+ctO=RFX$\"1kE\\MzWBfz*[FX$\"19xd9B \\%)eFO7$$\"+w\"3/-&FX$\"1d]n1>]PqFO7$$\"+cr&G9&FX$\"1U)z\"HnshpFO7$$ \"+OhIl_FX$\"17(Q7#)>`v&FO7$$\"+;^v(Q&FX$\"1l*=jW#>@^FO7$$\"+'4/-^&FX$ \"1(Q>.#G-7gFO7$$\"+wIlKcFX$\"1itL$o\"f;vFO7$$\"+c?5bdFX$\"1uTtbt\"z\" zFO7$$\"+O5bxeFX$\"1hsH/,r#p'FO7$$\"+;+++gFX$\"1:_#p'o:dZFO-%'COLOURG6 &%$RGBGF(F($\"*++++\"FX-F$6$7TF'7$F*$\"13$f$=7Lz6FO7$FQ$\"13]P#zkEL(F/7$FV$!1&oj*)=gMl&F/7$Ffn$!1+o[u 'RDN\"FO7$Fjn$!1:l7e\"RI(oF/7$F_o$\"1SFf%z$3UuF/7$Fdo$\"1^e`G$)*4Q\"FO 7$Fio$\"1M*os\"o3sbF/7$F^p$!1:(pa=W\"*)yF/7$Fcp$!1,S'=L(*=B\"FO7$Fhp$! 1xdjG#)\\?UF/7$F]q$\"1h(fw/zzv'F/7$Fbq$\"1h&zO!o:j'*F/7$Fgq$\"1(y3KPE8 W$F/7$F\\r$!11f51q&yB%F/7$Far$!1\\6hIC_zlF/7$Ffr$!1HV([_#3YNF/7$F[s$\" 1`+)3f:kQ)F:7$F`s$\"1V:r2/SDPF/7$Fes$\"1dp:\\O)z\\%F/7$Fjs$\"1P'**es<& zFF/7$F_t$!1[+hTb[I:F/7$Fdt$!1C5&3kDU(fF/7$Fit$!16lV7\"Rr)fF/7$F^u$\"1 " 0 "" {MPLTEXT 1 0 20 "display(inNL1,inL1);" }}{PARA 13 "" 1 "" {INLPLOT "6$ -%'CURVESG6$7T7$\"\"!F(7$$\"+'z*[C7!\"*$\"1LCb`GE#p\"!#;7$$\"+#fz*[CF, $\"1t.+^Y#fC#F/7$$\"+)QpMn$F,$!1,Q?*=Llo#F/7$$\"+%=fz*[F,$!1/2hw0x#*oF /7$$\"+!)*[C7'F,$!1H))Rao\\g=F/7$$\"+w(QpM(F,$\"1Ha(G^?+])F/7$$\"+s&G9 d)F,$\"11(=`_GB.\"!#:7$$\"+o$=fz*F,$!1_0z$>_Uh\"F/7$$\"+;3/-6!\")$!1A' )\\yF`I9FN7$$F+FW$!1`tjSM6k7FN7$$\"+w(QpM\"FW$\"1WCSc&=!=XF/7$$\"+cxQp 9FW$\"1#RQLo(\\M=FN7$$\"+On$=f\"FW$\"1dl;Es/ ij$F/7$$\"+'pMn$=FW$!1\\f#GtDZ&=FN7$$\"+wO=f>FW$!1!z<^0a&R:FN7$$\"+cEj \"3#FW$\"1RvT_NcIIF/7$$\"+O;3/AFW$\"1)*\\D4U_'e\"FN7$$\"+;1`EBFW$\"1)e *zB@!)35FN7$$\"+'fz*[CFW$!1$H?!p))*=U'F/7$$\"+w&G9d#FW$!1'=_1(F/7$$\"+cC71LFW$\"1$=.W)**z#4$F/7$$\"+O9dGMFW$\"1$36C.$Q4))F/7$$\"+ ;/-^NFW$\"1[RD(>KJ@'!#<7$$\"+'RpMn$FW$!1r6)e/&f#y*F/7$$\"+w$=fz$FW$!15 *zeiN**f'F/7$$\"+ctO=RFW$\"1:On4o,IsF/7$$\"+Oj\"3/%FW$\"1*HGM&3?d7FN7$ $\"+;`EjTFW$\"1i7%y\">PY8F/7$$\"+'H9dG%FW$!1+p+V_278FN7$$\"+wK;3WFW$!1 Z1=nsNN7FN7$$\"+cAhIXFW$\"1\"Qz87U`1%F/7$$\"+O71`YFW$\"1Vbo+jV8;FN7$$ \"+;-^vZFW$\"1:#f;Ge(=5FN7$$\"+'>fz*[FW$!12%*)*>)=oA)F/7$$\"+w\"3/-&FW $!11**pP+qH;FN7$$\"+cr&G9&FW$!1'=j%[6ZZeF/7$$\"+OhIl_FW$\"15U'QZb>8\"F N7$$\"+;^v(Q&FW$\"1LZ$\\-&Hc8FN7$$\"+'4/-^&FW$!1#G@z_GUp'Fgt7$$\"+wIlK cFW$!1=0QW*\\SG\"FN7$$\"+c?5bdFW$!1Gey<>!\\p(F/7$$\"+O5bxeFW$\"1-.(=OV =I(F/7$$\"+;+++gFW$\"1wmhN31?6FN-%'COLOURG6&%$RGBGF($\"*++++\"FWF(-F$6 $7TF'7$F*$\"1(G+.xo>p\"F/7$F1$\"1#HH,Yw_M[F/7$Fin$\"1\"[#y (G*3d8FN7$F^o$\"1`Kqs]*[b\"FN7$Fco$!1kt1P6y2VF/7$Fho$!1rK^E`wt?FN7$F]p $!1;-*R/%o/5FN7$Fbp$\"1LP*fkwke\"FN7$Fgp$\"1+o[ts0OAFN7$F\\q$!1$)Q^\\B Y*\\\"F/7$Faq$!1kAzLOtODFN7$Ffq$!14RAXihE;FN7$F[r$\"1/,G_$eOe\"FN7$F`r $\"1qufs*pD&GFN7$Fer$\"1Id1o9!35$F/7$Fjr$!1fY6K.;7GFN7$F_s$!12yher-\"H #FN7$Fds$\"1^L7Lt[p8FN7$Fis$\"1Ko%=5_DO$FN7$F^t$\"1zp7K\\n2!*F/7$Fct$! 1@gHk@n#*GFN7$Fit$!1**pb5C6YHFN7$F^u$\"1T@>an#3s*F/7$Fcu$\"1t,X)eL^t$F N7$Fhu$\"1'=JOO^Rd\"FN7$F]v$!1e)*G]7B\"y#FN7$Fbv$!1M;PjOKZNFN7$Fgv$\"1 &RIHX%eYUF/7$F\\w$\"1;;&>>I)\\RFN7$Faw$\"1s,u@>]$G#FN7$Ffw$!1Lk@&yU%*[ #FN7$F[x$!1\"Q56p]y0%FN7$F`x$!1.rl>M8kBF/7$Fex$\"16M6nCt&*RFN7$Fjx$\"1 Oma`rk')HFN7$F_y$!11,)\\%z!f.#FN7$Fdy$!1%=2W*z!)[WFN7$Fiy$!12)ea+eIt*F /7$F^z$\"12$*feacqQFN7$Fcz$\"1.NG'Q!*\\k$FN7$Fhz$!1H?!)p9lW9FN-F][l6&F _[l$\")+++!)FW$\")Vyg>FWF\\el" 2 253 186 186 2 0 1 0 2 9 0 4 2 1 45 45 10030 0 10056 10074 0 0 0 20530 0 12020 0 0 0 0 0 0 0 1 1 0 0 0 262 224 0 0 0 0 0 0 }}}}{SECT 0 {PARA 5 "" 0 "" {TEXT -1 12 "Omega of \+ 1.2" }}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 24 "display(inNL1.2,inL1. 2);" }}{PARA 13 "" 1 "" {INLPLOT "6$-%'CURVESG6$7T7$\"\"!F(7$$\"+'z*[C 7!\"*$\"1&=f`&\\%)*e\"!#;7$$\"+#fz*[CF,$\"1Qa'\\_#y\\8F/7$$\"+)QpMn$F, $!19lzRY!>p$F/7$$\"+%=fz*[F,$!16N!*[hXhZF/7$$\"+!)*[C7'F,$\"1\\EhI^%R0 $F/7$$\"+w(QpM(F,$\"1U,#4?9!Q#)F/7$$\"+s&G9d)F,$\"1>_tedl\\u!#<7$$\"+o $=fz*F,$!1$zMxu+'o#*F/7$$\"+;3/-6!\")$!1AFkgVZveF/7$$F+FW$\"1&QuXsskk' F/7$$\"+w(QpM\"FW$\"17\">*)QWU/*F/7$$\"+cxQp9FW$!1DI&f![M!*=F/7$$\"+On $=f\"FW$!1X&Qp.S-z)F/7$$\"+;dG9F/7$$\"+'pMn$=FW$\"1l#y \"HQQKjF/7$$\"+wO=f>FW$\"1Cx.oRz/KF/7$$\"+cEj\"3#FW$!18rQpfa6QF/7$$\"+ O;3/AFW$!1'HGB&R70DF/7$$\"+;1`EBFW$\"11\"pH6_)REF/7$$\"+'fz*[CFW$\"1k \\h(z7O;\"F/7$$\"+w&G9d#FW$!1`9H^ZFN7$$ \"+OlK;GFW$\"1EZTB/L*[%F/7$$\"+;bxQHFW$\"15uqud\">B\"F/7$$\"+'\\C71$FW $!16x*)oG*\\w&F/7$$\"+wMn$=$FW$!1S$G3arYX$F/7$$\"+cC71LFW$\"1?!37UZ_s& F/7$$\"+O9dGMFW$\"1ol[zs#o>'F/7$$\"+;/-^NFW$!1/$HFEF;$QF/7$$\"+'RpMn$F W$!1ph_#QF/7$$\"+wK;3WFW$\"1J/u\\iIJYF/7$$\"+cAhIXFW$\"1l% QE$G`\"4%F/7$$\"+O71`YFW$!1Rf%o.>wE$F/7$$\"+;-^vZFW$!1b3A#>\"f&p$F/7$$ \"+'>fz*[FW$\"1o@_yA^*z#F/7$$\"+w\"3/-&FW$\"1PTE*pZ7%HF/7$$\"+OhIl_FW$!1/LmcmBhQF/7$$\"+;^v(Q&FW$\"1'R?y:e.1$F/ 7$$\"+'4/-^&FW$\"1WF%FW-F$6$7TF'7$F*$\"1[ `<\"R!e*e\"F/7$F1$\"1H*)**HY'*R8F/7$F6$!1&Q#\\6UY.PF/7$F;$!1E,`+**\\>Y F/7$F@$\"1Ting'3WM$F/7$FE$\"1NUV@I!f0)F/7$FJ$!1ZtlS[ynVFN7$FP$!1.0W8jP )*)*F/7$FU$!1bfVIM9CRF/7$Fen$\"1ThQtsR+#*F/7$Fin$\"1&*)p,x3u1)F/7$F^o$ !1l]O!e#yahF/7$Fco$!1Z=^WLy_5!#:7$Fho$\"1v%eyZqX*=F/7$F]p$\"19+_9E1l5F _^l7$Fbp$\"14^&>H)>#4#F/7$Fgp$!1*H=\"p,Ov()F/7$F\\q$!1)*[e1u\"Qj%F/7$F aq$\"1f(y\\$zenfF/7$Ffq$\"1!y=fqB$H`F/7$F[r$!1!QT'\\6(zY$F/7$F`r$!1KL% \\_'*Gh%F/7$Fer$\"12gI[AuK@F/7$Fjr$\"1B?!3z5fW$F/7$F_s$!1CIH!\\m86#F/7 $Fds$!1b435gH:GF/7$Fis$\"1@lPaU)[(GF/7$F^t$\"1ps7co,\"G$F/7$Fct$!1Kd!Q \\+;a$F/7$Fht$!1h***>9$*ew%F/7$F]u$\"1y(z`!odALF/7$Fbu$\"1@&y-O_Cl'F/7 $Fgu$!1in0&4is(=F/7$F\\v$!1f%f?XT%4\")F/7$Fav$!1Lh$>tG(pcFN7$Ffv$\"1> \\s@ozy%)F/7$F[w$\"1\\E7(eQuN$F/7$F`w$!1-cd2GrYvF/7$Few$!1u(zU+F\"HdF/ 7$Fjw$\"1;!>z\\VLf&F/7$F_x$\"1!Qwjp(HKrF/7$Fdx$!1isojleCKF/7$Fix$!1qh[ ryMIuF/7$F^y$\"1 " 0 "" {MPLTEXT 1 0 35 "gamma_r:=sqrt((k/m)-b^2/(2*(m^2)));" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%(gamma_rG,$*$-%%sqrtG6#,&*&%\"kG\"\"\"%\"mG! \"\"\"\"%*&*$)%\"bG\"\"#F-F-*$)F.\"\"#F-F/!\"#F-#\"\"\"F5" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 32 "b:=.05:m:=1:k:=1:evalf(gamma_r);" } }{PARA 11 "" 1 "" {XPPMATH 20 "6#$\"+X![P***!#5" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 144 "The omega that best resembles the gamma_r is omega \+ = 1. So let us consider what happens as we evaluate the odeplot beyon d 1000 and up to 10000." }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 92 "inNL1:=o deplot(dsolve(ivp1,y(t),numeric,maxfun=400000000),[t,y(t)],1000..10000 ,color=green):" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 91 "inL1:=ode plot(dsolve(ivpL1,y(t),numeric,maxfun=4000000),[t,y(t)],1000..10000,co lor=orange):" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 20 "display(inN L1,inL1);" }}{PARA 13 "" 1 "" {INLPLOT "6$-%'CURVESG6$7T7$$\"%+5\"\"!$ !1J#G*GTc1]!#;7$$\"+pMn$=\"!\"'$\"1T*z!*=b1@\"!#:7$$\"+QpMn8F1$\"19tE( HL9n(F-7$$\"+2/-^:F1$!1NL]Ew=_5F47$$\"+wQpMF1$\"1b.*\\=WYT)F-7$$\"+93/-@F1$\"1&oYQ`\"3o6F47$$\"+$G9dG#F1$!1v!o7 '>OmeF-7$$\"+_xQpCF1$!1xJ()pM\"F47$$\"+f\"3/-$F1$\"1^5(fTN+r%!#=7$$\"+G;3/KF1$! 1#)f]ia)eM\"F47$$\"+(4bxQ$F1$!1$41.%3N(3$F-7$$\"+m&G9d$F1$\"1@!GT6ESG \"F47$$\"+N?5bPF1$\"1hAIbVr_fF-7$$\"+/bxQRF1$!1o6\"*39#H;\"F47$$\"+t*[ C7%F1$!19y?7/6\"\\)F-7$$\"+UC71VF1$\"1![&)RjG&f)*F-7$$\"+6fz*[%F1$\"1A ^*Gta%e5F47$$\"+!QpMn%F1$!1BO8-D:\"f(F-7$$\"+\\G9d[F1$!1]b2<$*=:7F47$$ \"+=j\"3/&F1$\"1]!fHIdx\"\\F-7$$\"+(y*[C_F1$\"1EJ?Y&zVJ\"F47$$\"+cK;3a F1$!19`,^zyp>F-7$$\"+Dn$=f&F1$!1d$Hu;nMN\"F47$$\"+%>5bx&F1$!1&R[8sS;4 \"F-7$$\"+jO=ffF1$\"1iwvzpfJ8F47$$\"+Kr&G9'F1$\"1ML]d*)3\"4%F-7$$\"+,1 `EjF1$!1&QILh4$\\7F47$$\"+qS?5lF1$!1MUc`gjgoF-7$$\"+Rv(Qp'F1$\"1l^G\"y &o36F47$$\"+35bxoF1$\"1xT1;K&)e#*F-7$$\"+xWAhqF1$!1Ec=W`/R\"*F-7$$\"+Y z*[C(F1$!1X\\y;y/=6F47$$\"+:9dGuF1$\"14L6!3e.s'F-7$$\"+%)[C7wF1$\"1z?] jCgb7F47$$\"+`$=fz(F1$!1j9z#\\Iq$RF-7$$\"+A=fzzF1$!1-F\"G;9XL\"F47$$\" +\"HlK;)F1$\"1FdT3F$=J*!#<7$$\"+g(QpM)F1$\"1SC)\\=lGN\"F47$$\"+HAhI&)F 1$\"1tEJ1U#*G@F-7$$\"+)p&G9()F1$!1=XQ)4)G58F47$$\"+n\"fz*))F1$!1,K3CK# z1&F-7$$\"+OEj\"3*F1$\"1/Gr6F4-%'COLOURG6&%$RGBGF*$\"*+ +++\"!\")F*-F$6$7T7$F($\"11^RnxFh\\F47$F/$\"1jlrk)er*QF47$F6$!1-xGUa%z 5%F47$F;$!1#=%ozbk'z%F47$F@$\"1&***f.\"fw0$F47$FE$\"1xT-#zehY&F47$FJ$! 1])**=Ou2'=F47$FO$!1r#*o@*)fteF47$FT$\"1dA=/WvYdF-7$FY$\"1#*HH%RJ%**fF 47$Fhn$\"1E]&*f4w*Q(F-7$F]o$!1)*))=9KiPeF47$Fco$!1**p%3o(>$F47$Fbp$!1\"o&fB^`&p%F47$Fgp$!1sraWB&oA %F47$F\\q$\"1tAhLA,qPF47$Faq$\"1ys6,VM_]F47$Ffq$!1*Hr#>utjEF47$F[r$!1+ IeoLgNcF47$F`r$\"1LZES1vH9F47$Fer$\"1eyS#Rl'[fF47$Fjr$!1S9LO'\\@F\"F-7 $F_s$!1qZrA2_wfF47$Fds$!1k6*4**>9=\"F47$Fis$\"1#3KV%Q$yr&F47$F^t$\"1RB 7v@TLCF47$Fct$!1JqM2u+&=&F47$Fht$!1'\\!Qc_toNF47$F]u$\"1[f1$f(e.WF47$F bu$\"1s_jml&H`%F47$Fgu$!1xx^0$R5T$F47$F\\v$!1<5_^o%)z_F47$Fav$\"1Kh$Q# *\\\\D#F47$Ffv$\"1wtP;nftdF47$F[w$!124gEvZ2**F-7$F`w$!1=bo%\\L0*fF47$F ew$!19GBdZb4KF-7$Fjw$\"1U.HFiD?fF47$F`x$\"1&4eggqsh\"F47$Fex$!1MB\"GLM hc&F47$Fjx$!126nei/OGF47$F_y$\"1o$3$fg9X\\F47$Fdy$\"1uk?e'[)=RF47$Fiy$ !1-_9zW1(3%F47$F^z$!1%*[j@Kw8[F47$Fcz$\"1Fg%e,II.$F47$Fhz$\"1\\F3$e$)y Z&F47$F][l$!1+kd#)zdL=F4-Fb[l6&Fd[l$\")+++!)Fg[l$\")Vyg>Fg[lFeel" 2 206 200 200 2 0 1 0 2 9 0 4 2 1 45 45 10030 0 10056 10074 0 0 0 20530 0 12020 0 0 0 0 0 0 0 1 1 0 0 0 318 27 0 0 0 0 0 0 }}}{EXCHG {PARA 0 " " 0 "" {TEXT -1 318 "As can be seen, the non-linear function resonates and stays within -2 and 2. So lets consider the linear function. Th e linear function is resonating back and forth between 6 and -6. It i s not showing signs of going beyond either of its boundary points, thu s we can assume that the amplitude will not go to infinity." }}{PARA 0 "" 0 "" {TEXT -1 133 "Note that we need to increase maxfun in order \+ to get it to plot out this far. Otherwise, the numerical plot will ju st stop plotting." }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 0 "" }{TEXT 257 17 "Extra Exploration" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 81 "od eplot(dsolve(ivp.8,y(t),numeric,maxfun=4000000),[t,y(t)],0..1000,color =violet);" }}{PARA 13 "" 1 "" {INLPLOT "6$-%'CURVESG6#7T7$\"\"!F(7$$\" +Fj\"3/#!\")$\"1qJ\"zCMXG$!#;7$$\"+aEj\"3%F,$\"1%eB!z')\\@M!#:7$$\"+\" )*[C7'F,$\"1R^k@3GvQF57$$\"+3`Ej\")F,$\"1>hMpl0^>!#97$$\"+k\"3/-\"!\"( $\"1s+B_`z9FF@7$$\"+(z*[C7FD$\"1&*e*)4BVRIF@7$$\"+I9dG9FD$\"1.]&*QoX*p \"F@7$$\"+jIlK;FD$\"1wEMb7j2;F@7$$\"+'pMn$=FD$\"1i*)oa_%*3sF57$$\"+Hj \"3/#FD$!1*QQKv=9s'F57$$\"+iz*[C#FD$!1oAo&RK\\a'F57$$\"+&fz*[CFD$!1%=o '[FP[iF57$$\"+G71`EFD$!1quqdhA;lF57$$\"+hG9dGFD$!176='*RJYCF57$$\"+%\\ C71$FD$\"1#ol!ei*3-&F/7$$\"+FhIlKFD$\"1We[mMu*f%F57$$\"+gxQpMFD$\"1*p@ )=yix:F@7$$\"+$RpMn$FD$\"1NQzvd%=l\"F@7$$\"+E5bxQFD$\"1K5)GGwT>$F@7$$ \"+fEj\"3%FD$\"1K1^>Un^RF@7$$\"+#H9dG%FD$\"1<(*eLv+5VF@7$$\"+Dfz*[%FD$ \"1dvJeH_eHF@7$$\"+ev(Qp%FD$\"1N\"yX'3\")yGF@7$$\"+\">fz*[FD$\"1FQ[V5Y nLF@7$$\"+C3/-^FD$\"1%ebs)*o)QHF@7$$\"+dC71`FD$\"1lE)*pj_#H$F@7$$\"+!4 /-^&FD$\"1(zbR'f#[3$F@7$$\"+BdG9dFD$\"1&\\\\F\"G!*oIF@7$$\"+ctO=fFD$\" 1y'p>VS\">LF@7$$\"+*)*[C7'FD$\"1I9i$f`f#HF@7$$\"+A1`EjFD$\"1;wkZB#RK$F @7$$\"+bAhIlFD$\"1jP2)o^_1$F@7$$\"+))QpMnFD$\"1q_\"yC^A2$F@7$$\"+@bxQp FD$\"1Ysp^7p=LF@7$$\"+ar&G9(FD$\"1R%e_(QAEHF@7$$\"+(yQpM(FD$\"18A*y@yt K$F@7$$\"+?/-^vFD$\"1['e#\\5YbIF@7$$\"+`?5bxFD$\"1`YtnBz$3$F@7$$\"+'o$ =fzFD$\"1<<#)[rC7LF@7$$\"+>`Ej\")FD$\"12N6ebzEHF@7$$\"+_pMn$)FD$\"1!z) RF*oBL$F@7$$\"+&eG9d)FD$\"1IE$**\\m^/$F@7$$\"+=-^v()FD$\"1@x97m&\\4$F@ 7$$\"+^=fz*)FD$\"1fmT>j!eI$F@7$$\"+%[tO=*FD$\"1zv>s\"yx#HF@7$$\"+<^v(Q *FD$\"1gu$GWmnL$F@7$$\"+]n$=f*FD$\"1W\\Qa*)GNIF@7$$\"+$Q=fz*FD$\"1&yCU aaj5$F@7$$\"+-+++5!\"'$\"1P6n%H$)))H$F@-%'COLOURG6&%$RGBG$\")#R!)4$F,$ \")t8V=F,Fb[l" 2 197 141 141 2 0 1 0 2 6 0 4 2 1 45 45 10030 0 10056 10074 0 0 0 20530 0 12020 0 0 0 0 0 0 0 1 1 0 0 0 171 143 0 0 0 0 0 0 }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 45 "Notice that we get some interes ting behavior!" }}}}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}}{SECT 1 {PARA 3 "" 0 "" {TEXT -1 65 "Number 7 (Simila r to Parts of Melinda's and Eric's Problem Sets)" }}{SECT 0 {PARA 4 " " 0 "" {TEXT -1 19 "Problem 7 Statement" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 101 "This problem considers a cable attached to posts at both ends, going thru the points (0,0) and (1,0)." }}{PARA 0 "" 0 "" {TEXT -1 102 "The height of the cable at any given point between is re presented by the function y''=c(sqrt(1+y'^2))." }}{PARA 0 "" 0 "" {TEXT -1 324 "y(0)=0 and y(1)=0 are called boundary value conditions. \+ The term c is a constant representing the length of the cable. We wi ll use c=1. For some value of s, for with y(0)=0 and y'(0)=s, the con dition y(0)=1 is satisfied. The problem wants us to find a workable v alue of s and determine that amount of \"dip\" in the cable." }}} {SECT 0 {PARA 4 "" 0 "" {TEXT -1 62 "Finding s so that the solution wi th D(y)(0)=s goes thru (1,0)." }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 191 "Notice that s must be negative since otherwise the cable will not dip down (s is the slope of the tangent line at the point (0,0) ). So, w e will guess and check various negative values of s." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 6 "c7:=1:" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 54 "de7:=diff(y(t),t$2)-(c7*(sqrt(1+(diff(y(t),t))^2)))=0 :" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 51 "y7:=s->dsolve(\{de7,y( 0)=0,D(y)(0)=s\},y(t),numeric):" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 50 "p1:=odeplot(y7(-.51),[t,y(t)],0..1.02, color=red):" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 51 "p3:=odeplot(y7(-.52),[t,y(t)],0..1. 02, color=blue):" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 54 "p4:=ode plot(y7(-.53),[t,y(t)],0..1.02, color=magenta):" }}}{EXCHG {PARA 0 "> \+ " 0 "" {MPLTEXT 1 0 18 "display(p1,p3,p4);" }}{PARA 13 "" 1 "" {INLPLOT "6%-%'CURVESG6$7T7$\"\"!F(7$$\"+`Ej\"3#!#6$!1$=v&)[(QP5!#<7$$ \"+1`EjTF,$!1edIR3eE?F/7$$\"+fz*[C'F,$!1$)))Q/(3!oHF/7$$\"+71`E$)F,$!1 J.cP!z?'QF/7$$\"+Fj\"3/\"!#5$!1aP&GFz\"4ZF/7$$\"+#fz*[7FB$!1sCM$[w'4bF /7$$\"+dG9d9FB$!1Ly!fbh!=\"F\\p7$$\"+-`EjTFB$!1()zVKW;)>\"F\\p7$$\"+ n&G9P%FB$!1+\" F\\p7$$\"+A9dGeFB$!1eaGPFS#=\"F\\p7$$\"+(oMn.'FB$!1!\\aU*p*3;\"F\\p7$$ \"+_z*[C'FB$!1NIAT*H]8\"F\\p7$$\"+<71`kFB$!1u\"*3p.z/6F\\p7$$\"+#[C7m' FB$!1/])R0$F/7$$\"+FpMn$*FB$!1K')y+#)*[6#F/7$$\"+#>5bd*FB$!1**pFfF5 I6F/7$$\"+dMn$y*FB$!1Ia,%oN`r*!#>7$$\"+An$=***FB$\"1Cr](>wR%)*!#=7$$\" +******>5!\"*$\"1xB9h)=]6#F/-%'COLOURG6&%$RGBG$\"*++++\"!\")F(F(-F$6$7 TF'7$F*$!1b!**z61\"e5F/7$F1$!1l!z_nGy1#F/7$F6$!19H1?_gHIF/7$F;$!1yM)Q_ _Q%RF/7$F@$!1R=@kn'4\"[F/7$FF$!1xuw'oB8j&F/7$FK$!11#>Wyy_S'F/7$FP$!1=Q 2Ru;LrF/7$FU$!1%eJ/20`\"yF/7$FZ$!1'poEF()>X)F/7$Fin$!1#eGD%**[V!*F/7$F ^o$!1dw())Rp+f*F/7$Fco$!1GxP\\i>45F\\p7$Fho$!12?^r'Q\\0\"F\\p7$F^p$!1/ v3GSD'4\"F\\p7$Fcp$!1R#)\\A-;L6F\\p7$Fhp$!1@N\\ZKnl6F\\p7$F]q$!1o\"3@> 2Q>\"F\\p7$Fbq$!1zxwZUd<7F\\p7$Fgq$!11\"F\\p7$F^u$!1\\mYYb- k6F\\p7$Fcu$!1F\\)y4v78\"F\\p7$Fhu$!1#3(*HmIT4\"F\\p7$F]v$!1Ve\"e9wD0 \"F\\p7$Fbv$!1.0JRNf15F\\p7$Fgv$!1M%Qgf[wyHF/7$Fiy$!1WmkjQS9?F/7$F^z$!1w1*[qt?+\"F/7$Fdz$\"1v\"Hc_Hk' eFbz7$Fjz$\"1/N93)p#o6F/-F`[l6&Fb[lF(F(Fc[l-F$6$7TF'7$F*$!1tpEMK#)y5F/ 7$F1$!1aG(zXq!4@F/7$F6$!1c))R8\")=\"4$F/7$F;$!1>]f'y,c-%F/7$F@$!1:f(QR ;F\"\\F/7$FF$!1;upZj\"Hv&F/7$FK$!1#Q(oRdcYlF/7$FP$!1O:)f[3SH(F/7$FU$!1 OVvz%ob*zF/7$FZ$!1gKdJ(\\:l)F/7$Fin$!1Zs8,lBi#*F/7$F^o$!1/kX?M*y#)*F/7 $Fco$!1NE&3cw[.\"F\\p7$Fho$!1'oax(y]#3\"F\\p7$F^p$!1#4tI$RqD6F\\p7$Fcp $!1VY\"F\\p7$F]q$!1P/E^\"e)G7F\\p7$Fbq$!1TT 1T7[a7F\\p7$Fgq$!1]\"y8fVdF\"F\\p7$F\\r$!1&3DfTaEH\"F\\p7$Far$!1H(eF/@ _I\"F\\p7$Ffr$!1I&Ru\"*[MJ\"F\\p7$F[s$!1bVR0;M<8F\\p7$F`s$!17:Y$z+pJ\" F\\p7$Fes$!1?5JA\"F\\p7$ Fcu$!1abelUA#>\"F\\p7$Fhu$!1d3C:1&p:\"F\\p7$F]v$!1;L'>'RF<6F\\p7$Fbv$! 1hlY7rF/7$Fdz$!1-c7i(HGj)Fhz7$Fjz$\"1Gy ?u\")zaAFhz-F`[l6&Fb[lFc[lF(Fc[l" 2 191 148 148 2 0 1 0 2 9 0 4 2 1 45 45 10030 0 10056 10074 0 0 0 20530 0 12020 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 58 "Notice that the blue curve with D(y)(0)=.52 goes thru 0,1." }}}{EXCHG {PARA 0 "" 0 " " {TEXT -1 60 "We can zoom in to find the value of D(y)(0) to any accu racy:" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 57 "zoom1:=odeplot(y7( -.520),[t,y(t)],0.96..1.02, color=red):" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 58 "zoom2:=odeplot(y7(-.521),[t,y(t)],0.96..1.02, color=b lue):" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 61 "zoom3:=odeplot(y7( -.522),[t,y(t)],0.96..1.02, color=magenta):" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 27 "display(zoom1,zoom2,zoom3);" }}{PARA 13 "" 1 "" {INLPLOT "6%-%'CURVESG6$7T7$$\"#'*!\"#$!1\\P-NK!y*=!#<7$$\"+)*[C7'*!#5 $!1[puPUDR=F-7$$\"+'z*[C'*F1$!1RQc+!R0y\"F-7$$\"+%pMnj*F1$!1P#QaVd;s\" F-7$$\"+#fz*['*F1$!1oX3a%4Em\"F-7$$\"+!\\C7m*F1$!1Qx'z'\\R.;F-7$$\"+)Q pMn*F1$!1**HI))Q,W:F-7$$\"+'G9do*F1$!1>e0EhY%[\"F-7$$\"+%=fzp*F1$!1W<% >f^ZU\"F-7$$\"+#3/-r*F1$!1niU'>q[O\"F-7$$\"+!)*[Cs*F1$!1$pC(\\=#[I\"F- 7$$\"+yQpM(*F1$!10?!=Y1YC\"F-7$$\"+w(Qpu*F1$!1GFPURA%=\"F-7$$\"+uO=f(* F1$!1%z+4?uO7\"F-7$$\"+s&G9x*F1$!12%*fYr&H1\"F-7$$\"+qMn$y*F1$!114V)os ?+\"F-7$$\"+o$=fz*F1$!1Yj1^t?5%*!#=7$$\"+mK;3)*F1$!15y'3&>,)z)Fip7$$\" +k\"3/#)*F1$!1YF!ewRT=)Fip7$$\"+iIlK)*F1$!1niWv)*eovFip7$$\"+gz*[%)*F1 $!1vz&oNh8&pFip7$$\"+eG9d)*F1$!1x0e%G`CL'Fip7$$\"+cxQp)*F1$!1*\\Q1tk=r &Fip7$$\"+aEj\"))*F1$!1%\\OXw%f*3&Fip7$$\"+_v(Q*)*F1$!1Z#eKXUcY%Fip7$$ \"+]C71**F1$!1u\\Eho+SQFip7$$\"+[tO=**F1$!1DS\\]qo7KFip7$$\"+YAhI**F1$ !1ruN!3#o$e#Fip7$$\"+Wr&G%**F1$!1(pSx+\"*H&>Fip7$$\"+U?5b**F1$!1))4+() Gh?8Fip7$$\"+SpMn**F1$!1(3h'*pna'o!#>7$$\"+Q=fz**F1$!1H&)G$fq\"z]!#?7$ $\"+On$=***F1$\"1BAM$eKl'eF`u7$$\"+j\"3/+\"!\"*$\"1HQap))yD7Fip7$$\"+` Ej,5F_v$\"1heP3mhm=Fip7$$\"+Vr&G+\"F_v$\"1>(4H7P\"4DFip7$$\"+L;3/5F_v$ \"14__w8N`JFip7$$\"+BhI05F_v$\"1(oT^Lg#*z$Fip7$$\"+81`15F_v$\"16&>s'\\ 'oW%Fip7$$\"+.^v25F_v$\"1*[hPCmh4&Fip7$$\"+$fz*35F_v$\"1QVJQ^;ZdFip7$$ \"+$3/-,\"F_v$\"1U,(pii)*R'Fip7$$\"+t&G9,\"F_v$\"1;yO)ofU0(Fip7$$\"+jI l75F_v$\"1cWp.tN5xFip7$$\"+`v(Q,\"F_v$\"1$G(ock:o$)Fip7$$\"+V?5:5F_v$ \"12WjL\"ew-*Fip7$$\"+LlK;5F_v$\"1xnPBL'))o*Fip7$$\"+B5b<5F_v$\"1b4t,t F-7$F/$!1 hrx.Y&y#>F-7$F5$!18Dc,)f#p=F-7$F:$!1MZ?N()\\5=F-7$F?$!1A*)f;8d^9:F-7$ FX$!162rQeVa9F-7$Fgn$!1DnVU%3XR\"F-7$F\\o$!1r!*=qSTM8F-7$Fao$!1AP'=j_T F\"F-7$Ffo$!1dh5PSs87F-7$F[p$!1C7J&>GJ:\"F-7$F`p$!1/Ii:]O#4\"F-7$Fep$! 1$oMpSM9.\"F-7$F[q$!14R))yFO.(*Fip7$F`q$!1x4vo`q!4*Fip7$Feq$!1\\XM?4Pw %)Fip7$Fjq$!1Jma7&e.'yFip7$F_r$!1OLs@smUsFip7$Fdr$!1.Ns@hHBmFip7$Fir$! 1/t(QGWA+'Fip7$F^s$!1d[*px5&z`Fip7$Fcs$!1D[OnY4bZFip7$Fhs$!1-o\"=e\"Fip7$F]w$\"1Oeq%*R![A# Fip7$Fbw$\"1%fNA>&[pGFip7$Fgw$\"1N(39Ohe^$Fip7$F\\x$\"1RhQrM$R;%Fip7$F ax$\"1T:(Q\\-P\"[Fip7$Ffx$\"1&)H6.%p^Y&Fip7$F[y$\"1%G/fF-7$F:$!1B[Zh]I**=F-7$F?$!1'Q'))4\")\\S=F-7$FD$! 1H#*p\"yC:y\"F-7$FI$!1\">!\\))\\QA[,@@E=\" F-7$Fep$!15)p%[=\"=7\"F-7$F[q$!1c@hK]$31\"F-7$F`q$!1*)4[6n!p***Fip7$Fe q$!1OG*Rs'y$Q*Fip7$Fjq$!1S+OW%*)*o()Fip7$F_r$!1[1x]R^_\")Fip7$Fdr$!1Mk *)=$fV`(Fip7$Fir$!19:*=iCX\"pFip7$F^s$!1d4RI*3IH'Fip7$Fcs$!1)Q4DJ6)pcF ip7$Fhs$!1#fRQ$3$\\/&Fip7$F]t$!1=6XdlO=WFip7$Fbt$!1l)))Qa<,z$Fip7$Fgt$ !1#or6&G=gJFip7$F\\u$!1]4zM:cGDFip7$Fbu$!1q\"4xk__*=Fip7$Fhu$!1Q&e.Cb- E\"Fip7$F]v$!1E.+*o&oNiF`u7$Fcv$\"1f#3u;%)3[\"Ffu7$Fhv$\"1z))opjx[lF`u 7$F]w$\"1S\")ow(QmH\"Fip7$Fbw$\"1bI2BK4S>Fip7$Fgw$\"1aP!4%>C&e#Fip7$F \\x$\"112](*e3KKFip7$Fax$\"1#=EF1E1)QFip7$Ffx$\"12d)*3M'3`%Fip7$F[y$\" 1<&H7\"*)z#=&Fip7$F`y$\"10R&paLk$eFip7$Fey$\"1fJ?'Ho<\\'Fip7$Fjy$\"1B. dTT!)[rFip7$F_z$\"1Q\"*>o?a2yFip7$Fdz$\"13ayjI)zY)Fip7$Fiz$\"1w%y&=\"G ,8*Fip7$F^[l$\"18FQD#yRz*Fip-Fc[l6&Fe[lFf[lFi[lFf[l" 2 169 144 144 2 0 1 0 2 9 0 4 2 1 45 45 10030 0 10056 10074 0 0 0 20530 0 12020 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 56 "So, we see that D(y)(0)=-.522 (blue curve) goes thru 0,1" }}} {SECT 0 {PARA 4 "" 0 "" {TEXT -1 23 "Finding the maximum dip" }}} {EXCHG {PARA 0 "" 0 "" {TEXT -1 109 "To find the maximum dip, the valu e for s=D(y)(0) will be put into the original equation and we'll dsolv e it. " }}{PARA 0 "" 0 "" {TEXT -1 61 "Notice that I am not using a nu merical approximation anymore." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 77 "realsolution:=unapply(rhs(evalf(dsolve(\{de7,y(0)=0,D(y)(0)=-. 522\},y(t)))),t);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%-realsolutionGR 6#%\"tG6\"6$%)operatorG%&arrowGF(,&-%%coshG6#,&9$\"\"\"$!+9:-3]!#5F2F2 $!+DV/G6!\"*F2F(F(F(" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 158 "Since th e maximum deip will be at an inflection point, the point where the der ivative of the realsolution is equal to zero will be the location of t hat dip. " }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 48 "realsolutiond erivative:=diff(realsolution(t),t);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6 #>%7realsolutionderivativeG-%%sinhG6#,&%\"tG\"\"\"$!+9:-3]!#5F*" }}} {EXCHG {PARA 0 "" 0 "" {TEXT -1 150 "Now we want to solve realsolution derivative=0 for the t value. We can estimate that the t value occurs at around .5, so we will use fsolve to do this" }}}{EXCHG {PARA 0 "> \+ " 0 "" {MPLTEXT 1 0 48 "a7:=fsolve(realsolutionderivative=0,t=0.4..0.6 );" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#a7G$\"+9:-3]!#5" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 95 "To obtain the actual depth of the dip, th is value for t must be put back into the realsolution." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 17 "realsolution(a7);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#$!*DV/G\"!\"*" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 103 "Notice that this value does agree with the approximate value of - .13 that can be observed on the graph." }}}}}{MARK "4 0 0" 70 } {VIEWOPTS 1 1 0 1 1 1803 }