Date |
WORK DUE at the beginning of class or lab
unless otherwise noted!
For practice problems, make sure that you can present and/or
turn in your work - write out the
problem and the complete solution - show work too!
|
June 27 - Fri |
|
__________ |
________________________________________________________________________
|
__________
|
________________________________________________________________________
|
June 25 - Wed |
- Test 3 on Chapters 1-4, 7, and computer graphics
study guide
- WebCT quiz 2 retakes due.
|
June 23 - Mon |
- Practice Problems 6.5 in the book numbers 13, 15, 17, 25, 33
- Test 2 Revisions Due at 5 - complete and correct revisions
will result in a +5 added onto your course average.
- Problem Set 6 Due at 5
Guidelines
7.1 (14 by hand and on Maple via the Evectors(A);
or Eigenvectors(A); command --
compare your answers and resolve any apparent conflicts)
LAMP Module 6.1 p. 322
Problem 4 Parts A and C: Rotation matrices in R^2 parts a and c.
Note: if you want to print out geometric pictures, use
Headtail(M); which gives a static picture, instead of
Clock(M); which gives an animation that won't print out.
Also, in part c, look at the eigenvalues and solve for the possible theta
that will yield real numbers (recall that the square root of a negative
number does not exist as a real number and that
cos(theta) is less than or equal to 1 always.)
7.2 6, 16 and 22
LAMP Module 6.3 p. 357 Problem 4 Part A:
More foxes and rabbits (Predator-prey model).
Hint See p. 348 Section 3 and Example 3A up until
about 1/3 the way down on p. 349 "tend toward the zero vector in the limit."
and complete a similar analysis.
LAMP Module 6.3 p. 357 Problem 4 Part B (Extra Credit)
|
June 20 - Fri |
- Go through or read Lamp Chapter 6 Module 3 on p. 340-356.
- Final Project Topic and Preliminary List of References Due at the
beginning of class (see links under Jun 27).
- WebCT quiz retakes due by 11:55 pm
|
June 18 - Wed |
|
June 16 - Mon |
- Problem Set 5 Due at 5pm
Problem Set Guidelines,
4.3
(14 if it is a subspace then just state that it is because it is closed under addition and scalar multiplication, but if it is not, explain in detail by showing that one of these is violated, as in class), 21
LAMP 5.1-- EXTRA CREDIT for p. 266 number 3
4.4 12, 16, 24, 26, 53
LAMP Module 2.4 Problem 11 p. 91-92
hints
4.5 20, 22, 24, 44
4.6 20, 22, 25, 27
|
June 12 - Thur |
- Problem Set 4 Due at 12:40pm
Problem Set Guidelines,
4.1 32, 35, 38
LAMP 2.2 p. 60-61 number 6
Hints
4.2 (19, 20, 21, 22, 31
if it is a vector space then just state that it is because it satisfies all of the vector space axioms , but if it is not, explain in detail by showing that one axiom is violated as in class)
|
June 11 - Wed |
|
June 10 - Tues |
- Practice Problems 4.2 numbers 18, 26c, 29 and
{C(-inf,inf) | f(0)=1} (Write out proofs of why they are not v.s.)
|
June 9 - Mon |
- Read 4.1
- Do practice problems 31 and 33 in 4.1.
- Work on PS 4 problems from 4.1
(32, 35, 38) and from Lamp 2.2 number 6.
|
June 6 - Fri |
- Problem Set 3 Due at 5pm
See Problem Set Guidelines
and Maple Commands
and Hints for Problem Set 3
2.510, 16, 24
Lamp 3.4 p. 147 Problem 4 part b.
Extra Credit for Problem 3 parts b and c.
3.1 36, 43 a, 46
3.2 29, 30 a and c
3.3 (28 by-hand and on Maple),
(34 AND If a unique solution to Sx=b exists, find it by using the method x=S^(-1) b.), 47, (48 a and c)
|
June 5 - Thur |
- Practice Problems 3.1 numbers 19, 21, 23, 25, 31, 45, 53
- Practice Problem 3.2 number 23
- Practice Problems 3.3 numbers 3, 11, 29, 31, 35
- Work on Problem Set 3.
|
June 4 - Wed |
- Problem Set 2 Due at 12:40pm
See Problem Set Guidelines
and Maple Commands
and Hints
2.1 22, (24 by-hand and on Maple), 28.
LAMP 3.4 p. 147 (see hints)
Problem 3 part a only and Problem 4 - determine the
matrix only (we will do the rest of the problem in the next problem set).
2.2 32 a, b and c.
LAMP 3.3 p. 132 Problem 4. Extra Credit for Problem 3
2.3 12, (14 by hand and on Maple), 28a, 37, (38 c and d).
|
June 3 - Tues |
- Practice Problems 2.3 (5, 7, 9 by-hand)
- Read over solutions to PS 1 on WebCT
- Read back over
Problem Set Guidelines before you start writing up PS 2.
|
June 2 - Mon |
- If you didn't turn it in on Friday, then turn in PS 1 (see below) by
12 noon.
-
Practice Problems 2.1 numbers 7, ( 9, 11 by hand), 15,
19, 21, 23, (30 by hand), 31, 47.
- Practice Problems 2.2, do 17, 18, 33, 35.
- Begin working on problem set 2.
|
May 30 - Fri |
- If you didn't finish this already, look over the relevant pages
in your Lamp book (for Chapter 1 module 1 and Chapter 1 module 3
up through and including example 1A (but not exercise 1.1) and then
"Fitting a cubic spline" go thru example 1C and stop at the end of it,
and the complete the
demo questions
- Problem Set 1 Due at 5pm (Note: for this
problem set only, since you are getting used to the
class and Maple, you may turn it in Monday at 12 if you
run into problems with the Friday deadline, but you should
try and meet the Friday deadline since you have another
problem set due on Tuesday) - See
Problem Set Guidelines
and Problem Set 1 Maple Commands
and Hints
and also see additional postings on the WebCT bulletin board.
1.1 (24 on Maple), 56, 70,
1.2
For (30 and 32, do them by hand and also on Maple) (on Maple use
no more than 2 commands to solve each problem), 42, 57, 58,
1.3 22, 24,
1.3 LAMP p. 33 Problem 3: Design a ski jump.
|
May 28 - Thur |
- Read section 1.2
- Practice Problems 1.2 (do these by-hand since you need to
get efficient at the by-hand method) numbers
13, 15, 17, 19, 21, 25, 27, 41, 47
- Continue working on problem set 1.
|
May 28 - Wed |
- Read pages 2 - 5 in LAMP (Module 1.1 Section 1).
- Read p. xiii and section 1.1 in text.
- Practice Problems 1.1 (do all but number 19 by-hand since you need
practice on this) numbers 7, 15, 19, 53, 55, 61, 69.
(answers to odd problems are in the back of the book - it is your job
to show work).
- Begin working on problem set 1.
|